INT.H (13459B)
1 // 2 // Copyright 2020 Electronic Arts Inc. 3 // 4 // TiberianDawn.DLL and RedAlert.dll and corresponding source code is free 5 // software: you can redistribute it and/or modify it under the terms of 6 // the GNU General Public License as published by the Free Software Foundation, 7 // either version 3 of the License, or (at your option) any later version. 8 9 // TiberianDawn.DLL and RedAlert.dll and corresponding source code is distributed 10 // in the hope that it will be useful, but with permitted additional restrictions 11 // under Section 7 of the GPL. See the GNU General Public License in LICENSE.TXT 12 // distributed with this program. You should have received a copy of the 13 // GNU General Public License along with permitted additional restrictions 14 // with this program. If not, see https://github.com/electronicarts/CnC_Remastered_Collection 15 16 /* $Header: /CounterStrike/INT.H 1 3/03/97 10:24a Joe_bostic $ */ 17 /*********************************************************************************************** 18 *** C O N F I D E N T I A L --- W E S T W O O D S T U D I O S *** 19 *********************************************************************************************** 20 * * 21 * Project Name : Command & Conquer * 22 * * 23 * File Name : INT.H * 24 * * 25 * Programmer : Joe L. Bostic * 26 * * 27 * Start Date : 04/26/96 * 28 * * 29 * Last Update : April 26, 1996 [JLB] * 30 * * 31 *---------------------------------------------------------------------------------------------* 32 * Functions: * 33 * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ 34 35 36 #ifndef INT_H 37 #define INT_H 38 39 #include <memory.h> 40 #include <limits.h> 41 #include <assert.h> 42 #include "mp.h" 43 #include "straw.h" 44 45 //#pragma warn -inl 46 47 template<int PRECISION> 48 class Int { 49 public: 50 51 /* 52 ** Constructors and initializers. 53 */ 54 Int(void) {XMP_Init(®[0], 0, PRECISION);} 55 Int(unsigned long value) {XMP_Init(®[0], value, PRECISION);} 56 57 void Randomize(Straw & rng, int bitcount) {XMP_Randomize(®[0], rng, bitcount, PRECISION);} 58 void Randomize(Straw & rng, const Int & minval, const Int & maxval) {XMP_Randomize(®[0], rng, minval, maxval, PRECISION); reg[0] |= 1;} 59 60 /* 61 ** Convenient conversion operators to get at the underlying array of 62 ** integers. Big number math is basically manipulation of arbitrary 63 ** length arrays. 64 */ 65 operator digit * () {return & reg[0];} 66 operator const digit * () const {return & reg[0];} 67 68 /* 69 ** Array access operator (references bit position). Bit 0 is the first bit. 70 */ 71 bool operator[](unsigned bit) const {return(XMP_Test_Bit(®[0], bit));} 72 73 /* 74 ** Unary operators. 75 */ 76 Int & operator ++ (void) {XMP_Inc(®[0], PRECISION);return(*this);} 77 Int & operator -- (void) {XMP_Dec(®[0], PRECISION);return(*this);} 78 int operator ! (void) const {return(XMP_Test_Eq_Int(®[0], 0, PRECISION));} 79 Int operator ~ (void) {XMP_Not(®[0], PRECISION);return(*this);} 80 Int operator - (void) const {Int a = *this;a.Negate();return (a);} 81 82 /* 83 ** Attribute query functions. 84 */ 85 int ByteCount(void) const {return(XMP_Count_Bytes(®[0], PRECISION));} 86 int BitCount(void) const {return(XMP_Count_Bits(®[0], PRECISION));} 87 bool Is_Negative(void) const {return(XMP_Is_Negative(®[0], PRECISION));} 88 unsigned MaxBitPrecision() const {return PRECISION*(sizeof(unsigned long)*CHAR_BIT);} 89 bool IsSmallPrime(void) const {return(XMP_Is_Small_Prime(®[0], PRECISION));} 90 bool SmallDivisorsTest(void) const {return(XMP_Small_Divisors_Test(®[0], PRECISION));} 91 bool FermatTest(unsigned rounds) const {return(XMP_Fermat_Test(®[0], rounds, PRECISION));} 92 bool IsPrime(void) const {return(XMP_Is_Prime(®[0], PRECISION));} 93 bool RabinMillerTest(Straw & rng, unsigned int rounds) const {return(XMP_Rabin_Miller_Test(rng, ®[0], rounds, PRECISION));} 94 95 /* 96 ** 'in-place' binary operators. 97 */ 98 Int & operator += (const Int & number) {Carry = XMP_Add(®[0], ®[0], number, 0, PRECISION);return(*this);} 99 Int & operator -= (const Int & number) {Borrow = XMP_Sub(®[0], ®[0], number, 0, PRECISION);return(*this);} 100 Int & operator *= (const Int & multiplier) {Remainder = *this;Error=XMP_Signed_Mult(®[0], Remainder, multiplier, PRECISION);return(*this);} 101 Int & operator /= (const Int & t) {*this = (*this) / t;return *this;} 102 Int & operator %= (const Int & t) {*this = (*this) % t;return *this;} 103 Int & operator <<= (int bits) {XMP_Shift_Left_Bits(®[0], bits, PRECISION);return *this;} 104 Int & operator >>= (int bits) {XMP_Shift_Right_Bits(®[0], bits, PRECISION);return *this;} 105 106 /* 107 ** Mathematical binary operators. 108 */ 109 Int operator + (const Int & number) const {Int term;Carry = XMP_Add(term, ®[0], number, 0, PRECISION);return(term);} 110 Int operator + (unsigned short b) const {Int result;Carry=XMP_Add_Int(result, ®[0], b, 0, PRECISION);return(result);} 111 // friend Int<PRECISION> operator + (digit b, const Int<PRECISION> & a) {return(Int<PRECISION>(b) + a);} 112 Int operator - (const Int & number) const {Int term;Borrow = XMP_Sub(term, ®[0], number, 0, PRECISION);return(term);} 113 Int operator - (unsigned short b) const {Int result;Borrow = XMP_Sub_Int(result, ®[0], b, 0, PRECISION);return(result);} 114 // friend Int<PRECISION> operator - (digit b, const Int<PRECISION> & a) {return(Int<PRECISION>(b) - a);} 115 Int operator * (const Int & multiplier) const {Int result;Error=XMP_Signed_Mult(result, ®[0], multiplier, PRECISION);return result;} 116 Int operator * (unsigned short b) const {Int result;Error=XMP_Unsigned_Mult_Int(result, ®[0], b, PRECISION);return(result);} 117 // friend Int<PRECISION> operator * (digit b, const Int<PRECISION> & a) {return(Int<PRECISION>(b) * a);} 118 Int operator / (const Int & divisor) const {Int quotient = *this;XMP_Signed_Div(Remainder, quotient, ®[0], divisor, PRECISION);return (quotient);} 119 Int operator / (unsigned long b) const {return(*this / Int<PRECISION>(b));} 120 Int operator / (unsigned short divisor) const {Int quotient;Error=XMP_Unsigned_Div_Int(quotient, ®[0], divisor, PRECISION);return(quotient);} 121 // friend Int<PRECISION> operator / (digit a, const Int<PRECISION> & b) {return(Int<PRECISION>(a) / b);} 122 Int operator % (const Int & divisor) const {Int remainder;XMP_Signed_Div(remainder, Remainder, ®[0], divisor, PRECISION);return(remainder);} 123 Int operator % (unsigned long b) const {return(*this % Int<PRECISION>(b));} 124 unsigned short operator % (unsigned short divisor) const {return(XMP_Unsigned_Div_Int(Remainder, ®[0], divisor, PRECISION));} 125 // friend Int<PRECISION> operator % (digit a, const Int<PRECISION> & b) {return(Int<PRECISION>(a) % b);} 126 127 /* 128 ** Bitwise binary operators. 129 */ 130 Int operator >> (int bits) const {Int result = *this; XMP_Shift_Right_Bits(result, bits, PRECISION);return result;} 131 Int operator << (int bits) const {Int result = *this; XMP_Shift_Left_Bits(result, bits, PRECISION);return result;} 132 133 /* 134 ** Comparison binary operators. 135 */ 136 int operator == (const Int &b) const {return (memcmp(®[0], &b.reg[0], (MAX_BIT_PRECISION/CHAR_BIT))==0);} 137 int operator != (const Int& b) const {return !(*this == b);} 138 int operator > (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) > 0);} 139 int operator >= (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) >= 0);} 140 int operator < (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) < 0);} 141 int operator <= (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) <= 0);} 142 143 /* 144 ** Misc. mathematical and logical functions. 145 */ 146 void Negate(void) {XMP_Neg(®[0], PRECISION);} 147 Int Abs(void) {XMP_Abs(®[0], PRECISION);return(*this);} 148 Int times_b_mod_c(Int const & multiplier, Int const & modulus) const { 149 Int result; 150 Error=xmp_stage_modulus(modulus, PRECISION); 151 Error=XMP_Mod_Mult(result, ®[0], multiplier, PRECISION); 152 XMP_Mod_Mult_Clear(PRECISION); 153 return result; 154 } 155 156 Int exp_b_mod_c(const Int & e, const Int & m) const { 157 Int result; 158 Error=xmp_exponent_mod(result, ®[0], e, m, PRECISION); 159 return result; 160 } 161 162 163 static Int Unsigned_Mult(Int const & multiplicand, Int const & multiplier) {Int product;Error=XMP_Unsigned_Mult(&product.reg[0], &multiplicand.reg[0], &multiplier.reg[0], PRECISION);return(product);} 164 static void Unsigned_Divide(Int & remainder, Int & quotient, const Int & dividend, const Int & divisor) {Error=XMP_Unsigned_Div(remainder, quotient, dividend, divisor, PRECISION);} 165 static void Signed_Divide(Int & remainder, Int & quotient, const Int & dividend, const Int & divisor) {XMP_Signed_Div(remainder, quotient, dividend, divisor, PRECISION);} 166 Int Inverse(const Int & modulus) const {Int result;XMP_Inverse_A_Mod_B(result, ®[0], modulus, PRECISION);return(result);} 167 168 static Int Decode_ASCII(char const * string) {Int result;XMP_Decode_ASCII(string, result, PRECISION);return(result);} 169 170 // Number (sign independand) inserted into buffer. 171 int Encode(unsigned char *output) const {return(XMP_Encode(output, ®[0], PRECISION));} 172 int Encode(unsigned char * output, unsigned length) const {return(XMP_Encode(output, length, ®[0], PRECISION));} 173 void Signed_Decode(const unsigned char * from, int frombytes) {XMP_Signed_Decode(®[0], from, frombytes, PRECISION);} 174 void Unsigned_Decode(const unsigned char * from, int frombytes) {XMP_Unsigned_Decode(®[0], from, frombytes, PRECISION);} 175 176 // encode Int using Distinguished Encoding Rules, returns size of output 177 int DEREncode(unsigned char * output) const {return(XMP_DER_Encode(®[0], output, PRECISION));} 178 void DERDecode(const unsigned char *input) {XMP_DER_Decode(®[0], input, PRECISION);} 179 180 // Friend helper functions. 181 friend Int<PRECISION> Generate_Prime(Straw & rng, int pbits, Int<PRECISION> const * = 0); 182 friend Int<PRECISION> Gcd(const Int<PRECISION> & a, const Int<PRECISION> & b); 183 // friend bool NextPrime(Int<PRECISION> & p, const Int<PRECISION> & max, bool blumInt=false); 184 // friend Int<PRECISION> a_exp_b_mod_pq(const Int<PRECISION> & a, const Int<PRECISION> & ep, const Int<PRECISION> & eq, const Int<PRECISION> & p, const Int<PRECISION> & q, const Int<PRECISION> & u); 185 186 static int Error; 187 188 // Carry result from last addition. 189 static bool Carry; 190 191 // Borrow result from last subtraction. 192 static bool Borrow; 193 194 // Remainder value from the various division routines. 195 static Int Remainder; 196 197 198 private: 199 digit reg[PRECISION]; 200 201 202 struct RemainderTable 203 { 204 RemainderTable(const Int<PRECISION> & p) : HasZeroEntry(false) 205 { 206 for (unsigned i = 0; i < ARRAY_SIZE(primeTable); i++) { 207 table[i] = p % primeTable[i]; 208 } 209 } 210 bool HasZero() const {return(HasZeroEntry);} 211 void Increment(unsigned short increment = 1) 212 { 213 HasZeroEntry = false; 214 for (unsigned int i = 0; i < ARRAY_SIZE(primeTable); i++) { 215 table[i] += increment; 216 while (table[i] >= primeTable[i]) { 217 table[i] -= primeTable[i]; 218 } 219 HasZeroEntry = (HasZeroEntry || !table[i]); 220 } 221 } 222 void Increment(const RemainderTable & rtQ) 223 { 224 HasZeroEntry = false; 225 for (unsigned int i = 0; i < ARRAY_SIZE(primeTable); i++) { 226 table[i] += rtQ.table[i]; 227 if (table[i] >= primeTable[i]) { 228 table[i] -= primeTable[i]; 229 } 230 HasZeroEntry = (HasZeroEntry || !table[i]); 231 } 232 } 233 234 bool HasZeroEntry; 235 unsigned short table[ARRAY_SIZE(primeTable)]; 236 }; 237 238 }; 239 240 241 template<class T> 242 T Gcd(const T & a, const T & n) 243 { 244 T g[3]={n, a, 0UL}; 245 246 unsigned int i = 1; 247 while (!!g[i%3]) { 248 g[(i+1)%3] = g[(i-1)%3] % g[i%3]; 249 i++; 250 } 251 return g[(i-1)%3]; 252 } 253 254 255 256 //#pragma warning 604 9 257 //#pragma warning 595 9 258 template<class T> 259 T Generate_Prime(Straw & rng, int pbits, T const *) 260 { 261 T minQ = (T(1UL) << (unsigned short)(pbits-(unsigned short)2)); 262 T maxQ = ((T(1UL) << (unsigned short)(pbits-(unsigned short)1)) - (unsigned short)1); 263 264 T q; 265 T p; 266 267 do { 268 q.Randomize(rng, minQ, maxQ); 269 p = (q*2) + (unsigned short)1; 270 271 T::RemainderTable rtQ(q); 272 T::RemainderTable rtP(p); 273 274 while (rtQ.HasZero() || rtP.HasZero() || !q.IsPrime() || !p.IsPrime()) { 275 q += 2; 276 p += 4; 277 if (q > maxQ) break; 278 279 rtQ.Increment(2); 280 rtP.Increment(4); 281 } 282 } while (q > maxQ); 283 284 return(p); 285 } 286 287 288 289 290 291 292 typedef Int<MAX_UNIT_PRECISION> bignum; 293 typedef Int<MAX_UNIT_PRECISION> BigInt; 294 295 296 297 //BigInt Gcd(const BigInt & a, const BigInt & n); 298 //BigInt Generate_Prime(RandomNumberGenerator & rng, int pbits, BigInt const * dummy); 299 300 #endif 301