Math.cpp (6391B)
1 /* 2 =========================================================================== 3 4 Doom 3 BFG Edition GPL Source Code 5 Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. 6 7 This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). 8 9 Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation, either version 3 of the License, or 12 (at your option) any later version. 13 14 Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>. 21 22 In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. 23 24 If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. 25 26 =========================================================================== 27 */ 28 29 #pragma hdrstop 30 #include "../precompiled.h" 31 32 const int SMALLEST_NON_DENORMAL = 1<<IEEE_FLT_MANTISSA_BITS; 33 const int NAN_VALUE = 0x7f800000; 34 35 const float idMath::PI = 3.14159265358979323846f; 36 const float idMath::TWO_PI = 2.0f * PI; 37 const float idMath::HALF_PI = 0.5f * PI; 38 const float idMath::ONEFOURTH_PI = 0.25f * PI; 39 const float idMath::ONEOVER_PI = 1.0f / idMath::PI; 40 const float idMath::ONEOVER_TWOPI = 1.0f / idMath::TWO_PI; 41 const float idMath::E = 2.71828182845904523536f; 42 const float idMath::SQRT_TWO = 1.41421356237309504880f; 43 const float idMath::SQRT_THREE = 1.73205080756887729352f; 44 const float idMath::SQRT_1OVER2 = 0.70710678118654752440f; 45 const float idMath::SQRT_1OVER3 = 0.57735026918962576450f; 46 const float idMath::M_DEG2RAD = PI / 180.0f; 47 const float idMath::M_RAD2DEG = 180.0f / PI; 48 const float idMath::M_SEC2MS = 1000.0f; 49 const float idMath::M_MS2SEC = 0.001f; 50 const float idMath::INFINITY = 1e30f; 51 const float idMath::FLT_EPSILON = 1.192092896e-07f; 52 const float idMath::FLT_SMALLEST_NON_DENORMAL = * reinterpret_cast< const float * >( & SMALLEST_NON_DENORMAL ); // 1.1754944e-038f 53 54 #if defined( ID_WIN_X86_SSE_INTRIN ) 55 const __m128 idMath::SIMD_SP_zero = { 0.0f, 0.0f, 0.0f, 0.0f }; 56 const __m128 idMath::SIMD_SP_255 = { 255.0f, 255.0f, 255.0f, 255.0f }; 57 const __m128 idMath::SIMD_SP_min_char = { -128.0f, -128.0f, -128.0f, -128.0f }; 58 const __m128 idMath::SIMD_SP_max_char = { 127.0f, 127.0f, 127.0f, 127.0f }; 59 const __m128 idMath::SIMD_SP_min_short = { -32768.0f, -32768.0f, -32768.0f, -32768.0f }; 60 const __m128 idMath::SIMD_SP_max_short = { 32767.0f, 32767.0f, 32767.0f, 32767.0f }; 61 const __m128 idMath::SIMD_SP_smallestNonDenorm = { FLT_SMALLEST_NON_DENORMAL, FLT_SMALLEST_NON_DENORMAL, FLT_SMALLEST_NON_DENORMAL, FLT_SMALLEST_NON_DENORMAL }; 62 const __m128 idMath::SIMD_SP_tiny = { 1e-4f, 1e-4f, 1e-4f, 1e-4f }; 63 const __m128 idMath::SIMD_SP_rsqrt_c0 = { 3.0f, 3.0f, 3.0f, 3.0f }; 64 const __m128 idMath::SIMD_SP_rsqrt_c1 = { -0.5f, -0.5f, -0.5f, -0.5f }; 65 #endif 66 67 bool idMath::initialized = false; 68 dword idMath::iSqrt[SQRT_TABLE_SIZE]; // inverse square root lookup table 69 70 /* 71 =============== 72 idMath::Init 73 =============== 74 */ 75 void idMath::Init() { 76 union _flint fi, fo; 77 78 for ( int i = 0; i < SQRT_TABLE_SIZE; i++ ) { 79 fi.i = ((EXP_BIAS-1) << EXP_POS) | (i << LOOKUP_POS); 80 fo.f = (float)( 1.0 / sqrt( fi.f ) ); 81 iSqrt[i] = ((dword)(((fo.i + (1<<(SEED_POS-2))) >> SEED_POS) & 0xFF))<<SEED_POS; 82 } 83 84 iSqrt[SQRT_TABLE_SIZE / 2] = ((dword)(0xFF))<<(SEED_POS); 85 86 initialized = true; 87 } 88 89 /* 90 ================ 91 idMath::FloatToBits 92 ================ 93 */ 94 int idMath::FloatToBits( float f, int exponentBits, int mantissaBits ) { 95 int i, sign, exponent, mantissa, value; 96 97 assert( exponentBits >= 2 && exponentBits <= 8 ); 98 assert( mantissaBits >= 2 && mantissaBits <= 23 ); 99 100 int maxBits = ( ( ( 1 << ( exponentBits - 1 ) ) - 1 ) << mantissaBits ) | ( ( 1 << mantissaBits ) - 1 ); 101 int minBits = ( ( ( 1 << exponentBits ) - 2 ) << mantissaBits ) | 1; 102 103 float max = BitsToFloat( maxBits, exponentBits, mantissaBits ); 104 float min = BitsToFloat( minBits, exponentBits, mantissaBits ); 105 106 if ( f >= 0.0f ) { 107 if ( f >= max ) { 108 return maxBits; 109 } else if ( f <= min ) { 110 return minBits; 111 } 112 } else { 113 if ( f <= -max ) { 114 return ( maxBits | ( 1 << ( exponentBits + mantissaBits ) ) ); 115 } else if ( f >= -min ) { 116 return ( minBits | ( 1 << ( exponentBits + mantissaBits ) ) ); 117 } 118 } 119 120 exponentBits--; 121 i = *reinterpret_cast<int *>(&f); 122 sign = ( i >> IEEE_FLT_SIGN_BIT ) & 1; 123 exponent = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS; 124 mantissa = i & ( ( 1 << IEEE_FLT_MANTISSA_BITS ) - 1 ); 125 value = sign << ( 1 + exponentBits + mantissaBits ); 126 value |= ( ( INT32_SIGNBITSET( exponent ) << exponentBits ) | ( abs( exponent ) & ( ( 1 << exponentBits ) - 1 ) ) ) << mantissaBits; 127 value |= mantissa >> ( IEEE_FLT_MANTISSA_BITS - mantissaBits ); 128 return value; 129 } 130 131 /* 132 ================ 133 idMath::BitsToFloat 134 ================ 135 */ 136 float idMath::BitsToFloat( int i, int exponentBits, int mantissaBits ) { 137 static int exponentSign[2] = { 1, -1 }; 138 int sign, exponent, mantissa, value; 139 140 assert( exponentBits >= 2 && exponentBits <= 8 ); 141 assert( mantissaBits >= 2 && mantissaBits <= 23 ); 142 143 exponentBits--; 144 sign = i >> ( 1 + exponentBits + mantissaBits ); 145 exponent = ( ( i >> mantissaBits ) & ( ( 1 << exponentBits ) - 1 ) ) * exponentSign[( i >> ( exponentBits + mantissaBits ) ) & 1]; 146 mantissa = ( i & ( ( 1 << mantissaBits ) - 1 ) ) << ( IEEE_FLT_MANTISSA_BITS - mantissaBits ); 147 value = sign << IEEE_FLT_SIGN_BIT | ( exponent + IEEE_FLT_EXPONENT_BIAS ) << IEEE_FLT_MANTISSA_BITS | mantissa; 148 return *reinterpret_cast<float *>(&value); 149 }