DOOM-3-BFG

DOOM 3 BFG Edition
Log | Files | Refs

Polynomial.cpp (6676B)


      1 /*
      2 ===========================================================================
      3 
      4 Doom 3 BFG Edition GPL Source Code
      5 Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. 
      6 
      7 This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").  
      8 
      9 Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
     10 it under the terms of the GNU General Public License as published by
     11 the Free Software Foundation, either version 3 of the License, or
     12 (at your option) any later version.
     13 
     14 Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
     15 but WITHOUT ANY WARRANTY; without even the implied warranty of
     16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     17 GNU General Public License for more details.
     18 
     19 You should have received a copy of the GNU General Public License
     20 along with Doom 3 BFG Edition Source Code.  If not, see <http://www.gnu.org/licenses/>.
     21 
     22 In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code.  If not, please request a copy in writing from id Software at the address below.
     23 
     24 If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
     25 
     26 ===========================================================================
     27 */
     28 
     29 #pragma hdrstop
     30 #include "../precompiled.h"
     31 
     32 const float EPSILON		= 1e-6f;
     33 
     34 /*
     35 =============
     36 idPolynomial::Laguer
     37 =============
     38 */
     39 int idPolynomial::Laguer( const idComplex *coef, const int degree, idComplex &x ) const {
     40 	const int MT = 10, MAX_ITERATIONS = MT * 8;
     41 	static const float frac[] = { 0.0f, 0.5f, 0.25f, 0.75f, 0.13f, 0.38f, 0.62f, 0.88f, 1.0f };
     42 	int i, j;
     43 	float abx, abp, abm, err;
     44 	idComplex dx, cx, b, d, f, g, s, gps, gms, g2;
     45 
     46 	for ( i = 1; i <= MAX_ITERATIONS; i++ ) {
     47 		b = coef[degree];
     48 		err = b.Abs();
     49 		d.Zero();
     50 		f.Zero();
     51 		abx = x.Abs();
     52 		for ( j = degree - 1; j >= 0; j-- ) {
     53 			f = x * f + d;
     54 			d = x * d + b;
     55 			b = x * b + coef[j];
     56 			err = b.Abs() + abx * err;
     57 		}
     58 		if ( b.Abs() < err * EPSILON ) {
     59 			return i;
     60 		}
     61 		g = d / b;
     62 		g2 = g * g;
     63 		s = ( ( degree - 1 ) * ( degree * ( g2 - 2.0f * f / b ) - g2 ) ).Sqrt();
     64 		gps = g + s;
     65 		gms = g - s;
     66 		abp = gps.Abs();
     67 		abm = gms.Abs();
     68 		if ( abp < abm ) {
     69 			gps = gms;
     70 		}
     71 		if ( Max( abp, abm ) > 0.0f ) {
     72 			dx = degree / gps;
     73 		} else {
     74 			dx = idMath::Exp( idMath::Log( 1.0f + abx ) ) * idComplex( idMath::Cos( i ), idMath::Sin( i ) );
     75 		}
     76 		cx = x - dx;
     77 		if ( x == cx ) {
     78 			return i;
     79 		}
     80 		if ( i % MT == 0 ) {
     81 			x = cx;
     82 		} else {
     83 			x -= frac[i/MT] * dx;
     84 		}
     85 	}
     86 	return i;
     87 }
     88 
     89 /*
     90 =============
     91 idPolynomial::GetRoots
     92 =============
     93 */
     94 int idPolynomial::GetRoots( idComplex *roots ) const {
     95 	int i, j;
     96 	idComplex x, b, c, *coef;
     97 
     98 	coef = (idComplex *) _alloca16( ( degree + 1 ) * sizeof( idComplex ) );
     99 	for ( i = 0; i <= degree; i++ ) {
    100 		coef[i].Set( coefficient[i], 0.0f );
    101 	}
    102 
    103 	for ( i = degree - 1; i >= 0; i-- ) {
    104 		x.Zero();
    105 		Laguer( coef, i + 1, x );
    106 		if ( idMath::Fabs( x.i ) < 2.0f * EPSILON * idMath::Fabs( x.r ) ) {
    107 			x.i = 0.0f;
    108 		}
    109 		roots[i] = x;
    110 		b = coef[i+1];
    111 		for ( j = i; j >= 0; j-- ) {
    112 			c = coef[j];
    113 			coef[j] = b;
    114 			b = x * b + c;
    115 		}
    116 	}
    117 
    118 	for ( i = 0; i <= degree; i++ ) {
    119 		coef[i].Set( coefficient[i], 0.0f );
    120 	}
    121 	for ( i = 0; i < degree; i++ ) {
    122 		Laguer( coef, degree, roots[i] );
    123 	}
    124 
    125 	for ( i = 1; i < degree; i++ ) {
    126 		x = roots[i];
    127 		for ( j = i - 1; j >= 0; j-- ) {
    128 			if ( roots[j].r <= x.r ) {
    129 				break;
    130 			}
    131 			roots[j+1] = roots[j];
    132 		}
    133 		roots[j+1] = x;
    134 	}
    135 
    136 	return degree;
    137 }
    138 
    139 /*
    140 =============
    141 idPolynomial::GetRoots
    142 =============
    143 */
    144 int idPolynomial::GetRoots( float *roots ) const {
    145 	int i, num;
    146 	idComplex *complexRoots;
    147 
    148 	switch( degree ) {
    149 		case 0: return 0;
    150 		case 1: return GetRoots1( coefficient[1], coefficient[0], roots );
    151 		case 2: return GetRoots2( coefficient[2], coefficient[1], coefficient[0], roots );
    152 		case 3: return GetRoots3( coefficient[3], coefficient[2], coefficient[1], coefficient[0], roots );
    153 		case 4: return GetRoots4( coefficient[4], coefficient[3], coefficient[2], coefficient[1], coefficient[0], roots );
    154 	}
    155 
    156 	// The Abel-Ruffini theorem states that there is no general solution
    157 	// in radicals to polynomial equations of degree five or higher.
    158 	// A polynomial equation can be solved by radicals if and only if
    159 	// its Galois group is a solvable group.
    160 
    161 	complexRoots = (idComplex *) _alloca16( degree * sizeof( idComplex ) );
    162 
    163 	GetRoots( complexRoots );
    164 
    165 	for ( num = i = 0; i < degree; i++ ) {
    166 		if ( complexRoots[i].i == 0.0f ) {
    167 			roots[i] = complexRoots[i].r;
    168 			num++;
    169 		}
    170 	}
    171 	return num;
    172 }
    173 
    174 /*
    175 =============
    176 idPolynomial::ToString
    177 =============
    178 */
    179 const char *idPolynomial::ToString( int precision ) const {
    180 	return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
    181 }
    182 
    183 /*
    184 =============
    185 idPolynomial::Test
    186 =============
    187 */
    188 void idPolynomial::Test() {
    189 	int i, num;
    190 	float roots[4], value;
    191 	idComplex complexRoots[4], complexValue;
    192 	idPolynomial p;
    193 
    194 	p = idPolynomial( -5.0f, 4.0f );
    195 	num = p.GetRoots( roots );
    196 	for ( i = 0; i < num; i++ ) {
    197 		value = p.GetValue( roots[i] );
    198 		assert( idMath::Fabs( value ) < 1e-4f );
    199 	}
    200 
    201 	p = idPolynomial( -5.0f, 4.0f, 3.0f );
    202 	num = p.GetRoots( roots );
    203 	for ( i = 0; i < num; i++ ) {
    204 		value = p.GetValue( roots[i] );
    205 		assert( idMath::Fabs( value ) < 1e-4f );
    206 	}
    207 
    208 	p = idPolynomial( 1.0f, 4.0f, 3.0f, -2.0f );
    209 	num = p.GetRoots( roots );
    210 	for ( i = 0; i < num; i++ ) {
    211 		value = p.GetValue( roots[i] );
    212 		assert( idMath::Fabs( value ) < 1e-4f );
    213 	}
    214 
    215 	p = idPolynomial( 5.0f, 4.0f, 3.0f, -2.0f );
    216 	num = p.GetRoots( roots );
    217 	for ( i = 0; i < num; i++ ) {
    218 		value = p.GetValue( roots[i] );
    219 		assert( idMath::Fabs( value ) < 1e-4f );
    220 	}
    221 
    222 	p = idPolynomial( -5.0f, 4.0f, 3.0f, 2.0f, 1.0f );
    223 	num = p.GetRoots( roots );
    224 	for ( i = 0; i < num; i++ ) {
    225 		value = p.GetValue( roots[i] );
    226 		assert( idMath::Fabs( value ) < 1e-4f );
    227 	}
    228 
    229 	p = idPolynomial( 1.0f, 4.0f, 3.0f, -2.0f );
    230 	num = p.GetRoots( complexRoots );
    231 	for ( i = 0; i < num; i++ ) {
    232 		complexValue = p.GetValue( complexRoots[i] );
    233 		assert( idMath::Fabs( complexValue.r ) < 1e-4f && idMath::Fabs( complexValue.i ) < 1e-4f );
    234 	}
    235 
    236 	p = idPolynomial( 5.0f, 4.0f, 3.0f, -2.0f );
    237 	num = p.GetRoots( complexRoots );
    238 	for ( i = 0; i < num; i++ ) {
    239 		complexValue = p.GetValue( complexRoots[i] );
    240 		assert( idMath::Fabs( complexValue.r ) < 1e-4f && idMath::Fabs( complexValue.i ) < 1e-4f );
    241 	}
    242 }