DOOM-3-BFG

DOOM 3 BFG Edition
Log | Files | Refs

jcphuff.cpp (28264B)


      1 /*
      2  * jcphuff.c
      3  *
      4  * Copyright (C) 1995, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains Huffman entropy encoding routines for progressive JPEG.
      9  *
     10  * We do not support output suspension in this module, since the library
     11  * currently does not allow multiple-scan files to be written with output
     12  * suspension.
     13  */
     14 
     15 #define JPEG_INTERNALS
     16 #include "jinclude.h"
     17 #include "jpeglib.h"
     18 #include "jchuff.h"      /* Declarations shared with jchuff.c */
     19 
     20 #ifdef C_PROGRESSIVE_SUPPORTED
     21 
     22 /* Expanded entropy encoder object for progressive Huffman encoding. */
     23 
     24 typedef struct {
     25     struct jpeg_entropy_encoder pub;/* public fields */
     26 
     27     /* Mode flag: TRUE for optimization, FALSE for actual data output */
     28     boolean gather_statistics;
     29 
     30     /* Bit-level coding status.
     31      * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
     32      */
     33     JOCTET *       next_output_byte; /* => next byte to write in buffer */
     34     size_t         free_in_buffer; /* # of byte spaces remaining in buffer */
     35     INT32          put_buffer; /* current bit-accumulation buffer */
     36     int            put_bits; /* # of bits now in it */
     37     j_compress_ptr cinfo;   /* link to cinfo (needed for dump_buffer) */
     38 
     39     /* Coding status for DC components */
     40     int last_dc_val[MAX_COMPS_IN_SCAN];/* last DC coef for each component */
     41 
     42     /* Coding status for AC components */
     43     int          ac_tbl_no; /* the table number of the single component */
     44     unsigned int EOBRUN;    /* run length of EOBs */
     45     unsigned int BE;    /* # of buffered correction bits before MCU */
     46     char *       bit_buffer;/* buffer for correction bits (1 per char) */
     47     /* packing correction bits tightly would save some space but cost time... */
     48 
     49     unsigned int restarts_to_go;/* MCUs left in this restart interval */
     50     int          next_restart_num; /* next restart number to write (0-7) */
     51 
     52     /* Pointers to derived tables (these workspaces have image lifespan).
     53      * Since any one scan codes only DC or only AC, we only need one set
     54      * of tables, not one for DC and one for AC.
     55      */
     56     c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
     57 
     58     /* Statistics tables for optimization; again, one set is enough */
     59     long * count_ptrs[NUM_HUFF_TBLS];
     60 } phuff_entropy_encoder;
     61 
     62 typedef phuff_entropy_encoder * phuff_entropy_ptr;
     63 
     64 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
     65  * buffer can hold.  Larger sizes may slightly improve compression, but
     66  * 1000 is already well into the realm of overkill.
     67  * The minimum safe size is 64 bits.
     68  */
     69 
     70 #define MAX_CORR_BITS  1000 /* Max # of correction bits I can buffer */
     71 
     72 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
     73  * We assume that int right shift is unsigned if INT32 right shift is,
     74  * which should be safe.
     75  */
     76 
     77 #ifdef RIGHT_SHIFT_IS_UNSIGNED
     78 #define ISHIFT_TEMPS    int ishift_temp;
     79 #define IRIGHT_SHIFT( x, shft )  \
     80     ( ( ishift_temp = ( x ) ) < 0 ? \
     81                       ( ishift_temp >> ( shft ) ) | ( ( ~0 ) << ( 16 - ( shft ) ) ) : \
     82                       ( ishift_temp >> ( shft ) ) )
     83 #else
     84 #define ISHIFT_TEMPS
     85 #define IRIGHT_SHIFT( x, shft )    ( ( x ) >> ( shft ) )
     86 #endif
     87 
     88 /* Forward declarations */
     89 METHODDEF boolean encode_mcu_DC_first JPP( ( j_compress_ptr cinfo,
     90                                              JBLOCKROW * MCU_data ) );
     91 METHODDEF boolean encode_mcu_AC_first JPP( ( j_compress_ptr cinfo,
     92                                              JBLOCKROW * MCU_data ) );
     93 METHODDEF boolean encode_mcu_DC_refine JPP( ( j_compress_ptr cinfo,
     94                                               JBLOCKROW * MCU_data ) );
     95 METHODDEF boolean encode_mcu_AC_refine JPP( ( j_compress_ptr cinfo,
     96                                               JBLOCKROW * MCU_data ) );
     97 METHODDEF void finish_pass_phuff JPP( (j_compress_ptr cinfo) );
     98 METHODDEF void finish_pass_gather_phuff JPP( (j_compress_ptr cinfo) );
     99 
    100 
    101 /*
    102  * Initialize for a Huffman-compressed scan using progressive JPEG.
    103  */
    104 
    105 METHODDEF void
    106 start_pass_phuff( j_compress_ptr cinfo, boolean gather_statistics ) {
    107     phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    108     boolean is_DC_band;
    109     int ci, tbl;
    110     jpeg_component_info * compptr;
    111 
    112     entropy->cinfo = cinfo;
    113     entropy->gather_statistics = gather_statistics;
    114 
    115     is_DC_band = ( cinfo->Ss == 0 );
    116 
    117     /* We assume jcmaster.c already validated the scan parameters. */
    118 
    119     /* Select execution routines */
    120     if ( cinfo->Ah == 0 ) {
    121         if ( is_DC_band ) {
    122             entropy->pub.encode_mcu = encode_mcu_DC_first;
    123         } else {
    124             entropy->pub.encode_mcu = encode_mcu_AC_first;
    125         }
    126     } else {
    127         if ( is_DC_band ) {
    128             entropy->pub.encode_mcu = encode_mcu_DC_refine;
    129         } else {
    130             entropy->pub.encode_mcu = encode_mcu_AC_refine;
    131             /* AC refinement needs a correction bit buffer */
    132             if ( entropy->bit_buffer == NULL ) {
    133                 entropy->bit_buffer = (char *)
    134                                       ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
    135                                                                    MAX_CORR_BITS * SIZEOF( char ) );
    136             }
    137         }
    138     }
    139     if ( gather_statistics ) {
    140         entropy->pub.finish_pass = finish_pass_gather_phuff;
    141     } else {
    142         entropy->pub.finish_pass = finish_pass_phuff;
    143     }
    144 
    145     /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
    146      * for AC coefficients.
    147      */
    148     for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
    149         compptr = cinfo->cur_comp_info[ci];
    150         /* Initialize DC predictions to 0 */
    151         entropy->last_dc_val[ci] = 0;
    152         /* Make sure requested tables are present */
    153         /* (In gather mode, tables need not be allocated yet) */
    154         if ( is_DC_band ) {
    155             if ( cinfo->Ah != 0 ) {/* DC refinement needs no table */
    156                 continue;
    157             }
    158             tbl = compptr->dc_tbl_no;
    159             if ( ( tbl < 0 ) || ( tbl >= NUM_HUFF_TBLS ) ||
    160                 ( ( cinfo->dc_huff_tbl_ptrs[tbl] == NULL ) && ( !gather_statistics ) ) ) {
    161                 ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, tbl );
    162             }
    163         } else {
    164             entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
    165             if ( ( tbl < 0 ) || ( tbl >= NUM_HUFF_TBLS ) ||
    166                 ( ( cinfo->ac_huff_tbl_ptrs[tbl] == NULL ) && ( !gather_statistics ) ) ) {
    167                 ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, tbl );
    168             }
    169         }
    170         if ( gather_statistics ) {
    171             /* Allocate and zero the statistics tables */
    172             /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    173             if ( entropy->count_ptrs[tbl] == NULL ) {
    174                 entropy->count_ptrs[tbl] = (long *)
    175                                            ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
    176                                                                         257 * SIZEOF( long ) );
    177             }
    178             MEMZERO( entropy->count_ptrs[tbl], 257 * SIZEOF( long ) );
    179         } else {
    180             /* Compute derived values for Huffman tables */
    181             /* We may do this more than once for a table, but it's not expensive */
    182             if ( is_DC_band ) {
    183                 jpeg_make_c_derived_tbl( cinfo, cinfo->dc_huff_tbl_ptrs[tbl],
    184                                          &entropy->derived_tbls[tbl] );
    185             } else {
    186                 jpeg_make_c_derived_tbl( cinfo, cinfo->ac_huff_tbl_ptrs[tbl],
    187                                          &entropy->derived_tbls[tbl] );
    188             }
    189         }
    190     }
    191 
    192     /* Initialize AC stuff */
    193     entropy->EOBRUN = 0;
    194     entropy->BE = 0;
    195 
    196     /* Initialize bit buffer to empty */
    197     entropy->put_buffer = 0;
    198     entropy->put_bits = 0;
    199 
    200     /* Initialize restart stuff */
    201     entropy->restarts_to_go = cinfo->restart_interval;
    202     entropy->next_restart_num = 0;
    203 }
    204 
    205 
    206 /* Outputting bytes to the file.
    207  * NB: these must be called only when actually outputting,
    208  * that is, entropy->gather_statistics == FALSE.
    209  */
    210 
    211 /* Emit a byte */
    212 #define emit_byte( entropy, val )  \
    213     { *( entropy )->next_output_byte++ = (JOCTET) ( val );  \
    214       if ( -- ( entropy )->free_in_buffer == 0 ) { \
    215           dump_buffer( entropy ); } }
    216 
    217 
    218 LOCAL void
    219 dump_buffer( phuff_entropy_ptr entropy ) {
    220 /* Empty the output buffer; we do not support suspension in this module. */
    221     struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
    222 
    223     if ( !( *dest->empty_output_buffer )( entropy->cinfo ) ) {
    224         ERREXIT( entropy->cinfo, JERR_CANT_SUSPEND );
    225     }
    226     /* After a successful buffer dump, must reset buffer pointers */
    227     entropy->next_output_byte = dest->next_output_byte;
    228     entropy->free_in_buffer = dest->free_in_buffer;
    229 }
    230 
    231 
    232 /* Outputting bits to the file */
    233 
    234 /* Only the right 24 bits of put_buffer are used; the valid bits are
    235  * left-justified in this part.  At most 16 bits can be passed to emit_bits
    236  * in one call, and we never retain more than 7 bits in put_buffer
    237  * between calls, so 24 bits are sufficient.
    238  */
    239 
    240 INLINE
    241 LOCAL void
    242 emit_bits( phuff_entropy_ptr entropy, unsigned int code, int size ) {
    243 /* Emit some bits, unless we are in gather mode */
    244 /* This routine is heavily used, so it's worth coding tightly. */
    245     register INT32 put_buffer = (INT32) code;
    246     register int put_bits = entropy->put_bits;
    247 
    248     /* if size is 0, caller used an invalid Huffman table entry */
    249     if ( size == 0 ) {
    250         ERREXIT( entropy->cinfo, JERR_HUFF_MISSING_CODE );
    251     }
    252 
    253     if ( entropy->gather_statistics ) {
    254         return;
    255     }               /* do nothing if we're only getting stats */
    256 
    257     put_buffer &= ( ( (INT32) 1 ) << size ) - 1;/* mask off any extra bits in code */
    258 
    259     put_bits += size;   /* new number of bits in buffer */
    260 
    261     put_buffer <<= 24 - put_bits;/* align incoming bits */
    262 
    263     put_buffer |= entropy->put_buffer;/* and merge with old buffer contents */
    264 
    265     while ( put_bits >= 8 ) {
    266         int c = (int) ( ( put_buffer >> 16 ) & 0xFF );
    267 
    268         emit_byte( entropy, c );
    269         if ( c == 0xFF ) {  /* need to stuff a zero byte? */
    270             emit_byte( entropy, 0 );
    271         }
    272         put_buffer <<= 8;
    273         put_bits -= 8;
    274     }
    275 
    276     entropy->put_buffer = put_buffer;/* update variables */
    277     entropy->put_bits = put_bits;
    278 }
    279 
    280 
    281 LOCAL void
    282 flush_bits( phuff_entropy_ptr entropy ) {
    283     emit_bits( entropy, 0x7F, 7 );/* fill any partial byte with ones */
    284     entropy->put_buffer = 0;   /* and reset bit-buffer to empty */
    285     entropy->put_bits = 0;
    286 }
    287 
    288 
    289 /*
    290  * Emit (or just count) a Huffman symbol.
    291  */
    292 
    293 INLINE
    294 LOCAL void
    295 emit_symbol( phuff_entropy_ptr entropy, int tbl_no, int symbol ) {
    296     if ( entropy->gather_statistics ) {
    297         entropy->count_ptrs[tbl_no][symbol]++;
    298     } else {
    299         c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
    300         emit_bits( entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol] );
    301     }
    302 }
    303 
    304 
    305 /*
    306  * Emit bits from a correction bit buffer.
    307  */
    308 
    309 LOCAL void
    310 emit_buffered_bits( phuff_entropy_ptr entropy, char * bufstart,
    311                     unsigned int nbits ) {
    312     if ( entropy->gather_statistics ) {
    313         return;
    314     }               /* no real work */
    315 
    316     while ( nbits > 0 ) {
    317         emit_bits( entropy, (unsigned int) ( *bufstart ), 1 );
    318         bufstart++;
    319         nbits--;
    320     }
    321 }
    322 
    323 
    324 /*
    325  * Emit any pending EOBRUN symbol.
    326  */
    327 
    328 LOCAL void
    329 emit_eobrun( phuff_entropy_ptr entropy ) {
    330     register int temp, nbits;
    331 
    332     if ( entropy->EOBRUN > 0 ) {/* if there is any pending EOBRUN */
    333         temp = entropy->EOBRUN;
    334         nbits = 0;
    335         while ( ( temp >>= 1 ) ) {
    336             nbits++;
    337         }
    338 
    339         emit_symbol( entropy, entropy->ac_tbl_no, nbits << 4 );
    340         if ( nbits ) {
    341             emit_bits( entropy, entropy->EOBRUN, nbits );
    342         }
    343 
    344         entropy->EOBRUN = 0;
    345 
    346         /* Emit any buffered correction bits */
    347         emit_buffered_bits( entropy, entropy->bit_buffer, entropy->BE );
    348         entropy->BE = 0;
    349     }
    350 }
    351 
    352 
    353 /*
    354  * Emit a restart marker & resynchronize predictions.
    355  */
    356 
    357 LOCAL void
    358 emit_restart( phuff_entropy_ptr entropy, int restart_num ) {
    359     int ci;
    360 
    361     emit_eobrun( entropy );
    362 
    363     if ( !entropy->gather_statistics ) {
    364         flush_bits( entropy );
    365         emit_byte( entropy, 0xFF );
    366         emit_byte( entropy, JPEG_RST0 + restart_num );
    367     }
    368 
    369     if ( entropy->cinfo->Ss == 0 ) {
    370         /* Re-initialize DC predictions to 0 */
    371         for ( ci = 0; ci < entropy->cinfo->comps_in_scan; ci++ ) {
    372             entropy->last_dc_val[ci] = 0;
    373         }
    374     } else {
    375         /* Re-initialize all AC-related fields to 0 */
    376         entropy->EOBRUN = 0;
    377         entropy->BE = 0;
    378     }
    379 }
    380 
    381 
    382 /*
    383  * MCU encoding for DC initial scan (either spectral selection,
    384  * or first pass of successive approximation).
    385  */
    386 
    387 METHODDEF boolean
    388 encode_mcu_DC_first( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) {
    389     phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    390     register int temp, temp2;
    391     register int nbits;
    392     int blkn, ci;
    393     int Al = cinfo->Al;
    394     JBLOCKROW block;
    395     jpeg_component_info * compptr;
    396     ISHIFT_TEMPS
    397 
    398     entropy->next_output_byte = cinfo->dest->next_output_byte;
    399     entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    400 
    401     /* Emit restart marker if needed */
    402     if ( cinfo->restart_interval ) {
    403         if ( entropy->restarts_to_go == 0 ) {
    404             emit_restart( entropy, entropy->next_restart_num );
    405         }
    406     }
    407 
    408     /* Encode the MCU data blocks */
    409     for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) {
    410         block = MCU_data[blkn];
    411         ci = cinfo->MCU_membership[blkn];
    412         compptr = cinfo->cur_comp_info[ci];
    413 
    414         /* Compute the DC value after the required point transform by Al.
    415          * This is simply an arithmetic right shift.
    416          */
    417         temp2 = IRIGHT_SHIFT( (int) ( ( *block )[0] ), Al );
    418 
    419         /* DC differences are figured on the point-transformed values. */
    420         temp = temp2 - entropy->last_dc_val[ci];
    421         entropy->last_dc_val[ci] = temp2;
    422 
    423         /* Encode the DC coefficient difference per section G.1.2.1 */
    424         temp2 = temp;
    425         if ( temp < 0 ) {
    426             temp = -temp;/* temp is abs value of input */
    427             /* For a negative input, want temp2 = bitwise complement of abs(input) */
    428             /* This code assumes we are on a two's complement machine */
    429             temp2--;
    430         }
    431 
    432         /* Find the number of bits needed for the magnitude of the coefficient */
    433         nbits = 0;
    434         while ( temp ) {
    435             nbits++;
    436             temp >>= 1;
    437         }
    438 
    439         /* Count/emit the Huffman-coded symbol for the number of bits */
    440         emit_symbol( entropy, compptr->dc_tbl_no, nbits );
    441 
    442         /* Emit that number of bits of the value, if positive, */
    443         /* or the complement of its magnitude, if negative. */
    444         if ( nbits ) {  /* emit_bits rejects calls with size 0 */
    445             emit_bits( entropy, (unsigned int) temp2, nbits );
    446         }
    447     }
    448 
    449     cinfo->dest->next_output_byte = entropy->next_output_byte;
    450     cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    451 
    452     /* Update restart-interval state too */
    453     if ( cinfo->restart_interval ) {
    454         if ( entropy->restarts_to_go == 0 ) {
    455             entropy->restarts_to_go = cinfo->restart_interval;
    456             entropy->next_restart_num++;
    457             entropy->next_restart_num &= 7;
    458         }
    459         entropy->restarts_to_go--;
    460     }
    461 
    462     return TRUE;
    463 }
    464 
    465 
    466 /*
    467  * MCU encoding for AC initial scan (either spectral selection,
    468  * or first pass of successive approximation).
    469  */
    470 
    471 METHODDEF boolean
    472 encode_mcu_AC_first( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) {
    473     phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    474     register int temp, temp2;
    475     register int nbits;
    476     register int r, k;
    477     int Se = cinfo->Se;
    478     int Al = cinfo->Al;
    479     JBLOCKROW block;
    480 
    481     entropy->next_output_byte = cinfo->dest->next_output_byte;
    482     entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    483 
    484     /* Emit restart marker if needed */
    485     if ( cinfo->restart_interval ) {
    486         if ( entropy->restarts_to_go == 0 ) {
    487             emit_restart( entropy, entropy->next_restart_num );
    488         }
    489     }
    490 
    491     /* Encode the MCU data block */
    492     block = MCU_data[0];
    493 
    494     /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
    495 
    496     r = 0;          /* r = run length of zeros */
    497 
    498     for ( k = cinfo->Ss; k <= Se; k++ ) {
    499         if ( ( temp = ( *block )[jpeg_natural_order[k]] ) == 0 ) {
    500             r++;
    501             continue;
    502         }
    503         /* We must apply the point transform by Al.  For AC coefficients this
    504          * is an integer division with rounding towards 0.  To do this portably
    505          * in C, we shift after obtaining the absolute value; so the code is
    506          * interwoven with finding the abs value (temp) and output bits (temp2).
    507          */
    508         if ( temp < 0 ) {
    509             temp = -temp;/* temp is abs value of input */
    510             temp >>= Al;/* apply the point transform */
    511             /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
    512             temp2 = ~temp;
    513         } else {
    514             temp >>= Al;/* apply the point transform */
    515             temp2 = temp;
    516         }
    517         /* Watch out for case that nonzero coef is zero after point transform */
    518         if ( temp == 0 ) {
    519             r++;
    520             continue;
    521         }
    522 
    523         /* Emit any pending EOBRUN */
    524         if ( entropy->EOBRUN > 0 ) {
    525             emit_eobrun( entropy );
    526         }
    527         /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    528         while ( r > 15 ) {
    529             emit_symbol( entropy, entropy->ac_tbl_no, 0xF0 );
    530             r -= 16;
    531         }
    532 
    533         /* Find the number of bits needed for the magnitude of the coefficient */
    534         nbits = 1;      /* there must be at least one 1 bit */
    535         while ( ( temp >>= 1 ) ) {
    536             nbits++;
    537         }
    538 
    539         /* Count/emit Huffman symbol for run length / number of bits */
    540         emit_symbol( entropy, entropy->ac_tbl_no, ( r << 4 ) + nbits );
    541 
    542         /* Emit that number of bits of the value, if positive, */
    543         /* or the complement of its magnitude, if negative. */
    544         emit_bits( entropy, (unsigned int) temp2, nbits );
    545 
    546         r = 0;      /* reset zero run length */
    547     }
    548 
    549     if ( r > 0 ) {      /* If there are trailing zeroes, */
    550         entropy->EOBRUN++;  /* count an EOB */
    551         if ( entropy->EOBRUN == 0x7FFF ) {
    552             emit_eobrun( entropy );
    553         }                   /* force it out to avoid overflow */
    554     }
    555 
    556     cinfo->dest->next_output_byte = entropy->next_output_byte;
    557     cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    558 
    559     /* Update restart-interval state too */
    560     if ( cinfo->restart_interval ) {
    561         if ( entropy->restarts_to_go == 0 ) {
    562             entropy->restarts_to_go = cinfo->restart_interval;
    563             entropy->next_restart_num++;
    564             entropy->next_restart_num &= 7;
    565         }
    566         entropy->restarts_to_go--;
    567     }
    568 
    569     return TRUE;
    570 }
    571 
    572 
    573 /*
    574  * MCU encoding for DC successive approximation refinement scan.
    575  * Note: we assume such scans can be multi-component, although the spec
    576  * is not very clear on the point.
    577  */
    578 
    579 METHODDEF boolean
    580 encode_mcu_DC_refine( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) {
    581     phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    582     register int temp;
    583     int blkn;
    584     int Al = cinfo->Al;
    585     JBLOCKROW block;
    586 
    587     entropy->next_output_byte = cinfo->dest->next_output_byte;
    588     entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    589 
    590     /* Emit restart marker if needed */
    591     if ( cinfo->restart_interval ) {
    592         if ( entropy->restarts_to_go == 0 ) {
    593             emit_restart( entropy, entropy->next_restart_num );
    594         }
    595     }
    596 
    597     /* Encode the MCU data blocks */
    598     for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) {
    599         block = MCU_data[blkn];
    600 
    601         /* We simply emit the Al'th bit of the DC coefficient value. */
    602         temp = ( *block )[0];
    603         emit_bits( entropy, (unsigned int) ( temp >> Al ), 1 );
    604     }
    605 
    606     cinfo->dest->next_output_byte = entropy->next_output_byte;
    607     cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    608 
    609     /* Update restart-interval state too */
    610     if ( cinfo->restart_interval ) {
    611         if ( entropy->restarts_to_go == 0 ) {
    612             entropy->restarts_to_go = cinfo->restart_interval;
    613             entropy->next_restart_num++;
    614             entropy->next_restart_num &= 7;
    615         }
    616         entropy->restarts_to_go--;
    617     }
    618 
    619     return TRUE;
    620 }
    621 
    622 
    623 /*
    624  * MCU encoding for AC successive approximation refinement scan.
    625  */
    626 
    627 METHODDEF boolean
    628 encode_mcu_AC_refine( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) {
    629     phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    630     register int temp;
    631     register int r, k;
    632     int EOB;
    633     char * BR_buffer;
    634     unsigned int BR;
    635     int Se = cinfo->Se;
    636     int Al = cinfo->Al;
    637     JBLOCKROW block;
    638     int absvalues[DCTSIZE2];
    639 
    640     entropy->next_output_byte = cinfo->dest->next_output_byte;
    641     entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    642 
    643     /* Emit restart marker if needed */
    644     if ( cinfo->restart_interval ) {
    645         if ( entropy->restarts_to_go == 0 ) {
    646             emit_restart( entropy, entropy->next_restart_num );
    647         }
    648     }
    649 
    650     /* Encode the MCU data block */
    651     block = MCU_data[0];
    652 
    653     /* It is convenient to make a pre-pass to determine the transformed
    654      * coefficients' absolute values and the EOB position.
    655      */
    656     EOB = 0;
    657     for ( k = cinfo->Ss; k <= Se; k++ ) {
    658         temp = ( *block )[jpeg_natural_order[k]];
    659         /* We must apply the point transform by Al.  For AC coefficients this
    660          * is an integer division with rounding towards 0.  To do this portably
    661          * in C, we shift after obtaining the absolute value.
    662          */
    663         if ( temp < 0 ) {
    664             temp = -temp;
    665         }               /* temp is abs value of input */
    666         temp >>= Al;    /* apply the point transform */
    667         absvalues[k] = temp;/* save abs value for main pass */
    668         if ( temp == 1 ) {
    669             EOB = k;
    670         }               /* EOB = index of last newly-nonzero coef */
    671     }
    672 
    673     /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
    674 
    675     r = 0;          /* r = run length of zeros */
    676     BR = 0;         /* BR = count of buffered bits added now */
    677     BR_buffer = entropy->bit_buffer + entropy->BE;/* Append bits to buffer */
    678 
    679     for ( k = cinfo->Ss; k <= Se; k++ ) {
    680         if ( ( temp = absvalues[k] ) == 0 ) {
    681             r++;
    682             continue;
    683         }
    684 
    685         /* Emit any required ZRLs, but not if they can be folded into EOB */
    686         while ( r > 15 && k <= EOB ) {
    687             /* emit any pending EOBRUN and the BE correction bits */
    688             emit_eobrun( entropy );
    689             /* Emit ZRL */
    690             emit_symbol( entropy, entropy->ac_tbl_no, 0xF0 );
    691             r -= 16;
    692             /* Emit buffered correction bits that must be associated with ZRL */
    693             emit_buffered_bits( entropy, BR_buffer, BR );
    694             BR_buffer = entropy->bit_buffer;/* BE bits are gone now */
    695             BR = 0;
    696         }
    697 
    698         /* If the coef was previously nonzero, it only needs a correction bit.
    699          * NOTE: a straight translation of the spec's figure G.7 would suggest
    700          * that we also need to test r > 15.  But if r > 15, we can only get here
    701          * if k > EOB, which implies that this coefficient is not 1.
    702          */
    703         if ( temp > 1 ) {
    704             /* The correction bit is the next bit of the absolute value. */
    705             BR_buffer[BR++] = (char) ( temp & 1 );
    706             continue;
    707         }
    708 
    709         /* Emit any pending EOBRUN and the BE correction bits */
    710         emit_eobrun( entropy );
    711 
    712         /* Count/emit Huffman symbol for run length / number of bits */
    713         emit_symbol( entropy, entropy->ac_tbl_no, ( r << 4 ) + 1 );
    714 
    715         /* Emit output bit for newly-nonzero coef */
    716         temp = ( ( *block )[jpeg_natural_order[k]] < 0 ) ? 0 : 1;
    717         emit_bits( entropy, (unsigned int) temp, 1 );
    718 
    719         /* Emit buffered correction bits that must be associated with this code */
    720         emit_buffered_bits( entropy, BR_buffer, BR );
    721         BR_buffer = entropy->bit_buffer;/* BE bits are gone now */
    722         BR = 0;
    723         r = 0;      /* reset zero run length */
    724     }
    725 
    726     if ( ( r > 0 ) || ( BR > 0 ) ) {/* If there are trailing zeroes, */
    727         entropy->EOBRUN++;  /* count an EOB */
    728         entropy->BE += BR;  /* concat my correction bits to older ones */
    729         /* We force out the EOB if we risk either:
    730          * 1. overflow of the EOB counter;
    731          * 2. overflow of the correction bit buffer during the next MCU.
    732          */
    733         if ( ( entropy->EOBRUN == 0x7FFF ) || ( entropy->BE > ( MAX_CORR_BITS - DCTSIZE2 + 1 ) ) ) {
    734             emit_eobrun( entropy );
    735         }
    736     }
    737 
    738     cinfo->dest->next_output_byte = entropy->next_output_byte;
    739     cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    740 
    741     /* Update restart-interval state too */
    742     if ( cinfo->restart_interval ) {
    743         if ( entropy->restarts_to_go == 0 ) {
    744             entropy->restarts_to_go = cinfo->restart_interval;
    745             entropy->next_restart_num++;
    746             entropy->next_restart_num &= 7;
    747         }
    748         entropy->restarts_to_go--;
    749     }
    750 
    751     return TRUE;
    752 }
    753 
    754 
    755 /*
    756  * Finish up at the end of a Huffman-compressed progressive scan.
    757  */
    758 
    759 METHODDEF void
    760 finish_pass_phuff( j_compress_ptr cinfo ) {
    761     phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    762 
    763     entropy->next_output_byte = cinfo->dest->next_output_byte;
    764     entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    765 
    766     /* Flush out any buffered data */
    767     emit_eobrun( entropy );
    768     flush_bits( entropy );
    769 
    770     cinfo->dest->next_output_byte = entropy->next_output_byte;
    771     cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    772 }
    773 
    774 
    775 /*
    776  * Finish up a statistics-gathering pass and create the new Huffman tables.
    777  */
    778 
    779 METHODDEF void
    780 finish_pass_gather_phuff( j_compress_ptr cinfo ) {
    781     phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    782     boolean is_DC_band;
    783     int ci, tbl;
    784     jpeg_component_info * compptr;
    785     JHUFF_TBL ** htblptr;
    786     boolean did[NUM_HUFF_TBLS];
    787 
    788     /* Flush out buffered data (all we care about is counting the EOB symbol) */
    789     emit_eobrun( entropy );
    790 
    791     is_DC_band = ( cinfo->Ss == 0 );
    792 
    793     /* It's important not to apply jpeg_gen_optimal_table more than once
    794      * per table, because it clobbers the input frequency counts!
    795      */
    796     MEMZERO( did, SIZEOF( did ) );
    797 
    798     for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
    799         compptr = cinfo->cur_comp_info[ci];
    800         if ( is_DC_band ) {
    801             if ( cinfo->Ah != 0 ) {/* DC refinement needs no table */
    802                 continue;
    803             }
    804             tbl = compptr->dc_tbl_no;
    805         } else {
    806             tbl = compptr->ac_tbl_no;
    807         }
    808         if ( !did[tbl] ) {
    809             if ( is_DC_band ) {
    810                 htblptr = &cinfo->dc_huff_tbl_ptrs[tbl];
    811             } else {
    812                 htblptr = &cinfo->ac_huff_tbl_ptrs[tbl];
    813             }
    814             if ( *htblptr == NULL ) {
    815                 *htblptr = jpeg_alloc_huff_table( (j_common_ptr) cinfo );
    816             }
    817             jpeg_gen_optimal_table( cinfo, *htblptr, entropy->count_ptrs[tbl] );
    818             did[tbl] = TRUE;
    819         }
    820     }
    821 }
    822 
    823 
    824 /*
    825  * Module initialization routine for progressive Huffman entropy encoding.
    826  */
    827 
    828 GLOBAL void
    829 jinit_phuff_encoder( j_compress_ptr cinfo ) {
    830     phuff_entropy_ptr entropy;
    831     int i;
    832 
    833     entropy = (phuff_entropy_ptr)
    834               ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
    835                                            SIZEOF( phuff_entropy_encoder ) );
    836     cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    837     entropy->pub.start_pass = start_pass_phuff;
    838 
    839     /* Mark tables unallocated */
    840     for ( i = 0; i < NUM_HUFF_TBLS; i++ ) {
    841         entropy->derived_tbls[i] = NULL;
    842         entropy->count_ptrs[i] = NULL;
    843     }
    844     entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
    845 }
    846 
    847 #endif /* C_PROGRESSIVE_SUPPORTED */