DOOM-3-BFG

DOOM 3 BFG Edition
Log | Files | Refs

jdhuff.cpp (20233B)


      1 /*
      2  * jdhuff.c
      3  *
      4  * Copyright (C) 1991-1995, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains Huffman entropy decoding routines.
      9  *
     10  * Much of the complexity here has to do with supporting input suspension.
     11  * If the data source module demands suspension, we want to be able to back
     12  * up to the start of the current MCU.  To do this, we copy state variables
     13  * into local working storage, and update them back to the permanent
     14  * storage only upon successful completion of an MCU.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 #include "jdhuff.h"      /* Declarations shared with jdphuff.c */
     21 
     22 
     23 /*
     24  * Expanded entropy decoder object for Huffman decoding.
     25  *
     26  * The savable_state subrecord contains fields that change within an MCU,
     27  * but must not be updated permanently until we complete the MCU.
     28  */
     29 
     30 typedef struct {
     31     int last_dc_val[MAX_COMPS_IN_SCAN];/* last DC coef for each component */
     32 } savable_state;
     33 
     34 /* This macro is to work around compilers with missing or broken
     35  * structure assignment.  You'll need to fix this code if you have
     36  * such a compiler and you change MAX_COMPS_IN_SCAN.
     37  */
     38 
     39 #ifndef NO_STRUCT_ASSIGN
     40 #define ASSIGN_STATE( dest, src )  ( ( dest ) = ( src ) )
     41 #else
     42 #if MAX_COMPS_IN_SCAN == 4
     43 #define ASSIGN_STATE( dest, src )  \
     44     ( ( dest ).last_dc_val[0] = ( src ).last_dc_val[0], \
     45      ( dest ).last_dc_val[1] = ( src ).last_dc_val[1], \
     46      ( dest ).last_dc_val[2] = ( src ).last_dc_val[2], \
     47      ( dest ).last_dc_val[3] = ( src ).last_dc_val[3] )
     48 #endif
     49 #endif
     50 
     51 
     52 typedef struct {
     53     struct jpeg_entropy_decoder pub;/* public fields */
     54 
     55     /* These fields are loaded into local variables at start of each MCU.
     56      * In case of suspension, we exit WITHOUT updating them.
     57      */
     58     bitread_perm_state bitstate;/* Bit buffer at start of MCU */
     59     savable_state      saved; /* Other state at start of MCU */
     60 
     61     /* These fields are NOT loaded into local working state. */
     62     unsigned int restarts_to_go;/* MCUs left in this restart interval */
     63 
     64     /* Pointers to derived tables (these workspaces have image lifespan) */
     65     d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
     66     d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
     67 } huff_entropy_decoder;
     68 
     69 typedef huff_entropy_decoder * huff_entropy_ptr;
     70 
     71 
     72 /*
     73  * Initialize for a Huffman-compressed scan.
     74  */
     75 
     76 METHODDEF void
     77 start_pass_huff_decoder( j_decompress_ptr cinfo ) {
     78     huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     79     int ci, dctbl, actbl;
     80     jpeg_component_info * compptr;
     81 
     82     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
     83      * This ought to be an error condition, but we make it a warning because
     84      * there are some baseline files out there with all zeroes in these bytes.
     85      */
     86     if ( ( cinfo->Ss != 0 ) || ( cinfo->Se != DCTSIZE2 - 1 ) ||
     87         ( cinfo->Ah != 0 ) || ( cinfo->Al != 0 ) ) {
     88         WARNMS( cinfo, JWRN_NOT_SEQUENTIAL );
     89     }
     90 
     91     for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
     92         compptr = cinfo->cur_comp_info[ci];
     93         dctbl = compptr->dc_tbl_no;
     94         actbl = compptr->ac_tbl_no;
     95         /* Make sure requested tables are present */
     96         if ( ( dctbl < 0 ) || ( dctbl >= NUM_HUFF_TBLS ) ||
     97             ( cinfo->dc_huff_tbl_ptrs[dctbl] == NULL ) ) {
     98             ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, dctbl );
     99         }
    100         if ( ( actbl < 0 ) || ( actbl >= NUM_HUFF_TBLS ) ||
    101             ( cinfo->ac_huff_tbl_ptrs[actbl] == NULL ) ) {
    102             ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, actbl );
    103         }
    104         /* Compute derived values for Huffman tables */
    105         /* We may do this more than once for a table, but it's not expensive */
    106         jpeg_make_d_derived_tbl( cinfo, cinfo->dc_huff_tbl_ptrs[dctbl],
    107                                  &entropy->dc_derived_tbls[dctbl] );
    108         jpeg_make_d_derived_tbl( cinfo, cinfo->ac_huff_tbl_ptrs[actbl],
    109                                  &entropy->ac_derived_tbls[actbl] );
    110         /* Initialize DC predictions to 0 */
    111         entropy->saved.last_dc_val[ci] = 0;
    112     }
    113 
    114     /* Initialize bitread state variables */
    115     entropy->bitstate.bits_left = 0;
    116     entropy->bitstate.get_buffer = 0;/* unnecessary, but keeps Purify quiet */
    117     entropy->bitstate.printed_eod = FALSE;
    118 
    119     /* Initialize restart counter */
    120     entropy->restarts_to_go = cinfo->restart_interval;
    121 }
    122 
    123 
    124 /*
    125  * Compute the derived values for a Huffman table.
    126  * Note this is also used by jdphuff.c.
    127  */
    128 
    129 GLOBAL void
    130 jpeg_make_d_derived_tbl( j_decompress_ptr cinfo, JHUFF_TBL * htbl,
    131                          d_derived_tbl ** pdtbl ) {
    132     d_derived_tbl * dtbl;
    133     int p, i, l, si;
    134     int lookbits, ctr;
    135     char huffsize[257];
    136     unsigned int huffcode[257];
    137     unsigned int code;
    138 
    139     /* Allocate a workspace if we haven't already done so. */
    140     if ( *pdtbl == NULL ) {
    141         *pdtbl = (d_derived_tbl *)
    142                  ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
    143                                               SIZEOF( d_derived_tbl ) );
    144     }
    145     dtbl = *pdtbl;
    146     dtbl->pub = htbl;   /* fill in back link */
    147 
    148     /* Figure C.1: make table of Huffman code length for each symbol */
    149     /* Note that this is in code-length order. */
    150 
    151     p = 0;
    152     for ( l = 1; l <= 16; l++ ) {
    153         for ( i = 1; i <= (int) htbl->bits[l]; i++ ) {
    154             huffsize[p++] = (char) l;
    155         }
    156     }
    157     huffsize[p] = 0;
    158 
    159     /* Figure C.2: generate the codes themselves */
    160     /* Note that this is in code-length order. */
    161 
    162     code = 0;
    163     si = huffsize[0];
    164     p = 0;
    165     while ( huffsize[p] ) {
    166         while ( ( (int) huffsize[p] ) == si ) {
    167             huffcode[p++] = code;
    168             code++;
    169         }
    170         code <<= 1;
    171         si++;
    172     }
    173 
    174     /* Figure F.15: generate decoding tables for bit-sequential decoding */
    175 
    176     p = 0;
    177     for ( l = 1; l <= 16; l++ ) {
    178         if ( htbl->bits[l] ) {
    179             dtbl->valptr[l] = p;/* huffval[] index of 1st symbol of code length l */
    180             dtbl->mincode[l] = huffcode[p];/* minimum code of length l */
    181             p += htbl->bits[l];
    182             dtbl->maxcode[l] = huffcode[p - 1];/* maximum code of length l */
    183         } else {
    184             dtbl->maxcode[l] = -1;/* -1 if no codes of this length */
    185         }
    186     }
    187     dtbl->maxcode[17] = 0xFFFFFL;/* ensures jpeg_huff_decode terminates */
    188 
    189     /* Compute lookahead tables to speed up decoding.
    190      * First we set all the table entries to 0, indicating "too long";
    191      * then we iterate through the Huffman codes that are short enough and
    192      * fill in all the entries that correspond to bit sequences starting
    193      * with that code.
    194      */
    195 
    196     MEMZERO( dtbl->look_nbits, SIZEOF( dtbl->look_nbits ) );
    197 
    198     p = 0;
    199     for ( l = 1; l <= HUFF_LOOKAHEAD; l++ ) {
    200         for ( i = 1; i <= (int) htbl->bits[l]; i++, p++ ) {
    201             /* l = current code's length, p = its index in huffcode[] & huffval[]. */
    202             /* Generate left-justified code followed by all possible bit sequences */
    203             lookbits = huffcode[p] << ( HUFF_LOOKAHEAD - l );
    204             for ( ctr = 1 << ( HUFF_LOOKAHEAD - l ); ctr > 0; ctr-- ) {
    205                 dtbl->look_nbits[lookbits] = l;
    206                 dtbl->look_sym[lookbits] = htbl->huffval[p];
    207                 lookbits++;
    208             }
    209         }
    210     }
    211 }
    212 
    213 
    214 /*
    215  * Out-of-line code for bit fetching (shared with jdphuff.c).
    216  * See jdhuff.h for info about usage.
    217  * Note: current values of get_buffer and bits_left are passed as parameters,
    218  * but are returned in the corresponding fields of the state struct.
    219  *
    220  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
    221  * of get_buffer to be used.  (On machines with wider words, an even larger
    222  * buffer could be used.)  However, on some machines 32-bit shifts are
    223  * quite slow and take time proportional to the number of places shifted.
    224  * (This is true with most PC compilers, for instance.)  In this case it may
    225  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
    226  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
    227  */
    228 
    229 #ifdef SLOW_SHIFT_32
    230 #define MIN_GET_BITS  15    /* minimum allowable value */
    231 #else
    232 #define MIN_GET_BITS  ( BIT_BUF_SIZE - 7 )
    233 #endif
    234 
    235 
    236 GLOBAL boolean
    237 jpeg_fill_bit_buffer( bitread_working_state * state,
    238                       register bit_buf_type get_buffer, register int bits_left,
    239                       int nbits ) {
    240 /* Load up the bit buffer to a depth of at least nbits */
    241 /* Copy heavily used state fields into locals (hopefully registers) */
    242     register const JOCTET * next_input_byte = state->next_input_byte;
    243     register size_t bytes_in_buffer = state->bytes_in_buffer;
    244     register int c;
    245 
    246     /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
    247     /* (It is assumed that no request will be for more than that many bits.) */
    248 
    249     while ( bits_left < MIN_GET_BITS ) {
    250         /* Attempt to read a byte */
    251         if ( state->unread_marker != 0 ) {
    252             goto no_more_data;
    253         }                   /* can't advance past a marker */
    254 
    255         if ( bytes_in_buffer == 0 ) {
    256             if ( !( *state->cinfo->src->fill_input_buffer )( state->cinfo ) ) {
    257                 return FALSE;
    258             }
    259             next_input_byte = state->cinfo->src->next_input_byte;
    260             bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
    261         }
    262         bytes_in_buffer--;
    263         c = GETJOCTET( *next_input_byte++ );
    264 
    265         /* If it's 0xFF, check and discard stuffed zero byte */
    266         if ( c == 0xFF ) {
    267             do {
    268                 if ( bytes_in_buffer == 0 ) {
    269                     if ( !( *state->cinfo->src->fill_input_buffer )( state->cinfo ) ) {
    270                         return FALSE;
    271                     }
    272                     next_input_byte = state->cinfo->src->next_input_byte;
    273                     bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
    274                 }
    275                 bytes_in_buffer--;
    276                 c = GETJOCTET( *next_input_byte++ );
    277             } while ( c == 0xFF );
    278 
    279             if ( c == 0 ) {
    280                 /* Found FF/00, which represents an FF data byte */
    281                 c = 0xFF;
    282             } else {
    283                 /* Oops, it's actually a marker indicating end of compressed data. */
    284                 /* Better put it back for use later */
    285                 state->unread_marker = c;
    286 
    287 no_more_data:
    288                 /* There should be enough bits still left in the data segment; */
    289                 /* if so, just break out of the outer while loop. */
    290                 if ( bits_left >= nbits ) {
    291                     break;
    292                 }
    293                 /* Uh-oh.  Report corrupted data to user and stuff zeroes into
    294                  * the data stream, so that we can produce some kind of image.
    295                  * Note that this code will be repeated for each byte demanded
    296                  * for the rest of the segment.  We use a nonvolatile flag to ensure
    297                  * that only one warning message appears.
    298                  */
    299                 if ( ! * ( state->printed_eod_ptr ) ) {
    300                     WARNMS( state->cinfo, JWRN_HIT_MARKER );
    301                     *( state->printed_eod_ptr ) = TRUE;
    302                 }
    303                 c = 0;/* insert a zero byte into bit buffer */
    304             }
    305         }
    306 
    307         /* OK, load c into get_buffer */
    308         get_buffer = ( get_buffer << 8 ) | c;
    309         bits_left += 8;
    310     }
    311 
    312     /* Unload the local registers */
    313     state->next_input_byte = next_input_byte;
    314     state->bytes_in_buffer = bytes_in_buffer;
    315     state->get_buffer = get_buffer;
    316     state->bits_left = bits_left;
    317 
    318     return TRUE;
    319 }
    320 
    321 
    322 /*
    323  * Out-of-line code for Huffman code decoding.
    324  * See jdhuff.h for info about usage.
    325  */
    326 
    327 GLOBAL int
    328 jpeg_huff_decode( bitread_working_state * state,
    329                   register bit_buf_type get_buffer, register int bits_left,
    330                   d_derived_tbl * htbl, int min_bits ) {
    331     register int l = min_bits;
    332     register INT32 code;
    333 
    334     /* HUFF_DECODE has determined that the code is at least min_bits */
    335     /* bits long, so fetch that many bits in one swoop. */
    336 
    337     CHECK_BIT_BUFFER( *state, l, return -1 );
    338     code = GET_BITS( l );
    339 
    340     /* Collect the rest of the Huffman code one bit at a time. */
    341     /* This is per Figure F.16 in the JPEG spec. */
    342 
    343     while ( code > htbl->maxcode[l] ) {
    344         code <<= 1;
    345 
    346         CHECK_BIT_BUFFER( *state, 1, return -1 );
    347         code |= GET_BITS( 1 );
    348         l++;
    349     }
    350 
    351     /* Unload the local registers */
    352     state->get_buffer = get_buffer;
    353     state->bits_left = bits_left;
    354 
    355     /* With garbage input we may reach the sentinel value l = 17. */
    356 
    357     if ( l > 16 ) {
    358         WARNMS( state->cinfo, JWRN_HUFF_BAD_CODE );
    359         return 0;       /* fake a zero as the safest result */
    360     }
    361 
    362     return htbl->pub->huffval[ htbl->valptr[l] +
    363                                ( (int) ( code - htbl->mincode[l] ) ) ];
    364 }
    365 
    366 
    367 /*
    368  * Figure F.12: extend sign bit.
    369  * On some machines, a shift and add will be faster than a table lookup.
    370  */
    371 
    372 #ifdef AVOID_TABLES
    373 
    374 #define HUFF_EXTEND( x, s )  ( ( x ) < ( 1 << ( ( s ) - 1 ) ) ? ( x ) + ( ( ( -1 ) << ( s ) ) + 1 ) : ( x ) )
    375 
    376 #else
    377 
    378 #define HUFF_EXTEND( x, s )  ( ( x ) < extend_test[s] ? ( x ) + extend_offset[s] : ( x ) )
    379 
    380 static const int extend_test[16] =   /* entry n is 2**(n-1) */
    381 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
    382   0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
    383 
    384 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
    385 { 0, ( ( -1 ) << 1 ) + 1, ( ( -1 ) << 2 ) + 1, ( ( -1 ) << 3 ) + 1, ( ( -1 ) << 4 ) + 1,
    386   ( ( -1 ) << 5 ) + 1, ( ( -1 ) << 6 ) + 1, ( ( -1 ) << 7 ) + 1, ( ( -1 ) << 8 ) + 1,
    387   ( ( -1 ) << 9 ) + 1, ( ( -1 ) << 10 ) + 1, ( ( -1 ) << 11 ) + 1, ( ( -1 ) << 12 ) + 1,
    388   ( ( -1 ) << 13 ) + 1, ( ( -1 ) << 14 ) + 1, ( ( -1 ) << 15 ) + 1 };
    389 
    390 #endif /* AVOID_TABLES */
    391 
    392 
    393 /*
    394  * Check for a restart marker & resynchronize decoder.
    395  * Returns FALSE if must suspend.
    396  */
    397 
    398 LOCAL boolean
    399 process_restart( j_decompress_ptr cinfo ) {
    400     huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    401     int ci;
    402 
    403     /* Throw away any unused bits remaining in bit buffer; */
    404     /* include any full bytes in next_marker's count of discarded bytes */
    405     cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
    406     entropy->bitstate.bits_left = 0;
    407 
    408     /* Advance past the RSTn marker */
    409     if ( !( *cinfo->marker->read_restart_marker )( cinfo ) ) {
    410         return FALSE;
    411     }
    412 
    413     /* Re-initialize DC predictions to 0 */
    414     for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) {
    415         entropy->saved.last_dc_val[ci] = 0;
    416     }
    417 
    418     /* Reset restart counter */
    419     entropy->restarts_to_go = cinfo->restart_interval;
    420 
    421     /* Next segment can get another out-of-data warning */
    422     entropy->bitstate.printed_eod = FALSE;
    423 
    424     return TRUE;
    425 }
    426 
    427 
    428 /*
    429  * Decode and return one MCU's worth of Huffman-compressed coefficients.
    430  * The coefficients are reordered from zigzag order into natural array order,
    431  * but are not dequantized.
    432  *
    433  * The i'th block of the MCU is stored into the block pointed to by
    434  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
    435  * (Wholesale zeroing is usually a little faster than retail...)
    436  *
    437  * Returns FALSE if data source requested suspension.  In that case no
    438  * changes have been made to permanent state.  (Exception: some output
    439  * coefficients may already have been assigned.  This is harmless for
    440  * this module, since we'll just re-assign them on the next call.)
    441  */
    442 
    443 METHODDEF boolean
    444 decode_mcu( j_decompress_ptr cinfo, JBLOCKROW * MCU_data ) {
    445     huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    446     register int s, k, r;
    447     int blkn, ci;
    448     JBLOCKROW block;
    449     BITREAD_STATE_VARS;
    450     savable_state state;
    451     d_derived_tbl * dctbl;
    452     d_derived_tbl * actbl;
    453     jpeg_component_info * compptr;
    454 
    455     /* Process restart marker if needed; may have to suspend */
    456     if ( cinfo->restart_interval ) {
    457         if ( entropy->restarts_to_go == 0 ) {
    458             if ( !process_restart( cinfo ) ) {
    459                 return FALSE;
    460             }
    461         }
    462     }
    463 
    464     /* Load up working state */
    465     BITREAD_LOAD_STATE( cinfo, entropy->bitstate );
    466     ASSIGN_STATE( state, entropy->saved );
    467 
    468     /* Outer loop handles each block in the MCU */
    469 
    470     for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) {
    471         block = MCU_data[blkn];
    472         ci = cinfo->MCU_membership[blkn];
    473         compptr = cinfo->cur_comp_info[ci];
    474         dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
    475         actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
    476 
    477         /* Decode a single block's worth of coefficients */
    478 
    479         /* Section F.2.2.1: decode the DC coefficient difference */
    480         HUFF_DECODE( s, br_state, dctbl, return FALSE, label1 );
    481         if ( s ) {
    482             CHECK_BIT_BUFFER( br_state, s, return FALSE );
    483 
    484             r = GET_BITS( s );
    485             s = HUFF_EXTEND( r, s );
    486         }
    487 
    488         /* Shortcut if component's values are not interesting */
    489         if ( !compptr->component_needed ) {
    490             goto skip_ACs;
    491         }
    492 
    493         /* Convert DC difference to actual value, update last_dc_val */
    494         s += state.last_dc_val[ci];
    495         state.last_dc_val[ci] = s;
    496         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
    497         ( *block )[0] = (JCOEF) s;
    498 
    499         /* Do we need to decode the AC coefficients for this component? */
    500         if ( compptr->DCT_scaled_size > 1 ) {
    501 
    502             /* Section F.2.2.2: decode the AC coefficients */
    503             /* Since zeroes are skipped, output area must be cleared beforehand */
    504             for ( k = 1; k < DCTSIZE2; k++ ) {
    505                 HUFF_DECODE( s, br_state, actbl, return FALSE, label2 );
    506 
    507                 r = s >> 4;
    508                 s &= 15;
    509 
    510                 if ( s ) {
    511                     k += r;
    512 
    513                     CHECK_BIT_BUFFER( br_state, s, return FALSE );
    514                     r = GET_BITS( s );
    515                     s = HUFF_EXTEND( r, s );
    516                     /* Output coefficient in natural (dezigzagged) order.
    517                      * Note: the extra entries in jpeg_natural_order[] will save us
    518                      * if k >= DCTSIZE2, which could happen if the data is corrupted.
    519                      */
    520                     ( *block )[jpeg_natural_order[k]] = (JCOEF) s;
    521                 } else {
    522                     if ( r != 15 ) {
    523                         break;
    524                     }
    525                     k += 15;
    526                 }
    527             }
    528 
    529         } else {
    530 skip_ACs:
    531 
    532             /* Section F.2.2.2: decode the AC coefficients */
    533             /* In this path we just discard the values */
    534             for ( k = 1; k < DCTSIZE2; k++ ) {
    535                 HUFF_DECODE( s, br_state, actbl, return FALSE, label3 );
    536 
    537                 r = s >> 4;
    538                 s &= 15;
    539 
    540                 if ( s ) {
    541                     k += r;
    542 
    543                     CHECK_BIT_BUFFER( br_state, s, return FALSE );
    544                     DROP_BITS( s );
    545                 } else {
    546                     if ( r != 15 ) {
    547                         break;
    548                     }
    549                     k += 15;
    550                 }
    551             }
    552 
    553         }
    554     }
    555 
    556     /* Completed MCU, so update state */
    557     BITREAD_SAVE_STATE( cinfo, entropy->bitstate );
    558     ASSIGN_STATE( entropy->saved, state );
    559 
    560     /* Account for restart interval (no-op if not using restarts) */
    561     entropy->restarts_to_go--;
    562 
    563     return TRUE;
    564 }
    565 
    566 
    567 /*
    568  * Module initialization routine for Huffman entropy decoding.
    569  */
    570 
    571 GLOBAL void
    572 jinit_huff_decoder( j_decompress_ptr cinfo ) {
    573     huff_entropy_ptr entropy;
    574     int i;
    575 
    576     entropy = (huff_entropy_ptr)
    577               ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
    578                                            SIZEOF( huff_entropy_decoder ) );
    579     cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
    580     entropy->pub.start_pass = start_pass_huff_decoder;
    581     entropy->pub.decode_mcu = decode_mcu;
    582 
    583     /* Mark tables unallocated */
    584     for ( i = 0; i < NUM_HUFF_TBLS; i++ ) {
    585         entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    586     }
    587 }