DOOM-3-BFG

DOOM 3 BFG Edition
Log | Files | Refs

jdmainct.cpp (22513B)


      1 /*
      2  * jdmainct.c
      3  *
      4  * Copyright (C) 1994-1995, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains the main buffer controller for decompression.
      9  * The main buffer lies between the JPEG decompressor proper and the
     10  * post-processor; it holds downsampled data in the JPEG colorspace.
     11  *
     12  * Note that this code is bypassed in raw-data mode, since the application
     13  * supplies the equivalent of the main buffer in that case.
     14  */
     15 
     16 #define JPEG_INTERNALS
     17 #include "jinclude.h"
     18 #include "jpeglib.h"
     19 
     20 
     21 /*
     22  * In the current system design, the main buffer need never be a full-image
     23  * buffer; any full-height buffers will be found inside the coefficient or
     24  * postprocessing controllers.  Nonetheless, the main controller is not
     25  * trivial.  Its responsibility is to provide context rows for upsampling/
     26  * rescaling, and doing this in an efficient fashion is a bit tricky.
     27  *
     28  * Postprocessor input data is counted in "row groups".  A row group
     29  * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
     30  * sample rows of each component.  (We require DCT_scaled_size values to be
     31  * chosen such that these numbers are integers.  In practice DCT_scaled_size
     32  * values will likely be powers of two, so we actually have the stronger
     33  * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
     34  * Upsampling will typically produce max_v_samp_factor pixel rows from each
     35  * row group (times any additional scale factor that the upsampler is
     36  * applying).
     37  *
     38  * The coefficient controller will deliver data to us one iMCU row at a time;
     39  * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
     40  * exactly min_DCT_scaled_size row groups.  (This amount of data corresponds
     41  * to one row of MCUs when the image is fully interleaved.)  Note that the
     42  * number of sample rows varies across components, but the number of row
     43  * groups does not.  Some garbage sample rows may be included in the last iMCU
     44  * row at the bottom of the image.
     45  *
     46  * Depending on the vertical scaling algorithm used, the upsampler may need
     47  * access to the sample row(s) above and below its current input row group.
     48  * The upsampler is required to set need_context_rows TRUE at global selection
     49  * time if so.  When need_context_rows is FALSE, this controller can simply
     50  * obtain one iMCU row at a time from the coefficient controller and dole it
     51  * out as row groups to the postprocessor.
     52  *
     53  * When need_context_rows is TRUE, this controller guarantees that the buffer
     54  * passed to postprocessing contains at least one row group's worth of samples
     55  * above and below the row group(s) being processed.  Note that the context
     56  * rows "above" the first passed row group appear at negative row offsets in
     57  * the passed buffer.  At the top and bottom of the image, the required
     58  * context rows are manufactured by duplicating the first or last real sample
     59  * row; this avoids having special cases in the upsampling inner loops.
     60  *
     61  * The amount of context is fixed at one row group just because that's a
     62  * convenient number for this controller to work with.  The existing
     63  * upsamplers really only need one sample row of context.  An upsampler
     64  * supporting arbitrary output rescaling might wish for more than one row
     65  * group of context when shrinking the image; tough, we don't handle that.
     66  * (This is justified by the assumption that downsizing will be handled mostly
     67  * by adjusting the DCT_scaled_size values, so that the actual scale factor at
     68  * the upsample step needn't be much less than one.)
     69  *
     70  * To provide the desired context, we have to retain the last two row groups
     71  * of one iMCU row while reading in the next iMCU row.  (The last row group
     72  * can't be processed until we have another row group for its below-context,
     73  * and so we have to save the next-to-last group too for its above-context.)
     74  * We could do this most simply by copying data around in our buffer, but
     75  * that'd be very slow.  We can avoid copying any data by creating a rather
     76  * strange pointer structure.  Here's how it works.  We allocate a workspace
     77  * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
     78  * of row groups per iMCU row).  We create two sets of redundant pointers to
     79  * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized
     80  * pointer lists look like this:
     81  *                   M+1                          M-1
     82  * master pointer --> 0         master pointer --> 0
     83  *                    1                            1
     84  *                   ...                          ...
     85  *                   M-3                          M-3
     86  *                   M-2                           M
     87  *                   M-1                          M+1
     88  *                    M                           M-2
     89  *                   M+1                          M-1
     90  *                    0                            0
     91  * We read alternate iMCU rows using each master pointer; thus the last two
     92  * row groups of the previous iMCU row remain un-overwritten in the workspace.
     93  * The pointer lists are set up so that the required context rows appear to
     94  * be adjacent to the proper places when we pass the pointer lists to the
     95  * upsampler.
     96  *
     97  * The above pictures describe the normal state of the pointer lists.
     98  * At top and bottom of the image, we diddle the pointer lists to duplicate
     99  * the first or last sample row as necessary (this is cheaper than copying
    100  * sample rows around).
    101  *
    102  * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1.  In that
    103  * situation each iMCU row provides only one row group so the buffering logic
    104  * must be different (eg, we must read two iMCU rows before we can emit the
    105  * first row group).  For now, we simply do not support providing context
    106  * rows when min_DCT_scaled_size is 1.  That combination seems unlikely to
    107  * be worth providing --- if someone wants a 1/8th-size preview, they probably
    108  * want it quick and dirty, so a context-free upsampler is sufficient.
    109  */
    110 
    111 
    112 /* Private buffer controller object */
    113 
    114 typedef struct {
    115     struct jpeg_d_main_controller pub;/* public fields */
    116 
    117     /* Pointer to allocated workspace (M or M+2 row groups). */
    118     JSAMPARRAY buffer[MAX_COMPONENTS];
    119 
    120     boolean    buffer_full; /* Have we gotten an iMCU row from decoder? */
    121     JDIMENSION rowgroup_ctr;/* counts row groups output to postprocessor */
    122 
    123     /* Remaining fields are only used in the context case. */
    124 
    125     /* These are the master pointers to the funny-order pointer lists. */
    126     JSAMPIMAGE xbuffer[2];  /* pointers to weird pointer lists */
    127 
    128     int        whichptr;/* indicates which pointer set is now in use */
    129     int        context_state; /* process_data state machine status */
    130     JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
    131     JDIMENSION iMCU_row_ctr;/* counts iMCU rows to detect image top/bot */
    132 } my_main_controller;
    133 
    134 typedef my_main_controller * my_main_ptr;
    135 
    136 /* context_state values: */
    137 #define CTX_PREPARE_FOR_IMCU    0   /* need to prepare for MCU row */
    138 #define CTX_PROCESS_IMCU    1   /* feeding iMCU to postprocessor */
    139 #define CTX_POSTPONED_ROW   2   /* feeding postponed row group */
    140 
    141 
    142 /* Forward declarations */
    143 METHODDEF void process_data_simple_main
    144 JPP( ( j_decompress_ptr cinfo, JSAMPARRAY output_buf,
    145        JDIMENSION * out_row_ctr, JDIMENSION out_rows_avail ) );
    146 METHODDEF void process_data_context_main
    147 JPP( ( j_decompress_ptr cinfo, JSAMPARRAY output_buf,
    148        JDIMENSION * out_row_ctr, JDIMENSION out_rows_avail ) );
    149 #ifdef QUANT_2PASS_SUPPORTED
    150 METHODDEF void process_data_crank_post
    151 JPP( ( j_decompress_ptr cinfo, JSAMPARRAY output_buf,
    152        JDIMENSION * out_row_ctr, JDIMENSION out_rows_avail ) );
    153 #endif
    154 
    155 
    156 LOCAL void
    157 alloc_funny_pointers( j_decompress_ptr cinfo ) {
    158 /* Allocate space for the funny pointer lists.
    159  * This is done only once, not once per pass.
    160  */
    161     my_main_ptr main = (my_main_ptr) cinfo->main;
    162     int ci, rgroup;
    163     int M = cinfo->min_DCT_scaled_size;
    164     jpeg_component_info * compptr;
    165     JSAMPARRAY xbuf;
    166 
    167     /* Get top-level space for component array pointers.
    168      * We alloc both arrays with one call to save a few cycles.
    169      */
    170     main->xbuffer[0] = (JSAMPIMAGE)
    171                        ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
    172                                                     cinfo->num_components * 2 * SIZEOF( JSAMPARRAY ) );
    173     main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
    174 
    175     for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    176           ci++, compptr++ ) {
    177         rgroup = ( compptr->v_samp_factor * compptr->DCT_scaled_size ) /
    178                  cinfo->min_DCT_scaled_size; /* height of a row group of component */
    179         /* Get space for pointer lists --- M+4 row groups in each list.
    180          * We alloc both pointer lists with one call to save a few cycles.
    181          */
    182         xbuf = (JSAMPARRAY)
    183                ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
    184                                             2 * ( rgroup * ( M + 4 ) ) * SIZEOF( JSAMPROW ) );
    185         xbuf += rgroup; /* want one row group at negative offsets */
    186         main->xbuffer[0][ci] = xbuf;
    187         xbuf += rgroup * ( M + 4 );
    188         main->xbuffer[1][ci] = xbuf;
    189     }
    190 }
    191 
    192 
    193 LOCAL void
    194 make_funny_pointers( j_decompress_ptr cinfo ) {
    195 /* Create the funny pointer lists discussed in the comments above.
    196  * The actual workspace is already allocated (in main->buffer),
    197  * and the space for the pointer lists is allocated too.
    198  * This routine just fills in the curiously ordered lists.
    199  * This will be repeated at the beginning of each pass.
    200  */
    201     my_main_ptr main = (my_main_ptr) cinfo->main;
    202     int ci, i, rgroup;
    203     int M = cinfo->min_DCT_scaled_size;
    204     jpeg_component_info * compptr;
    205     JSAMPARRAY buf, xbuf0, xbuf1;
    206 
    207     for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    208           ci++, compptr++ ) {
    209         rgroup = ( compptr->v_samp_factor * compptr->DCT_scaled_size ) /
    210                  cinfo->min_DCT_scaled_size; /* height of a row group of component */
    211         xbuf0 = main->xbuffer[0][ci];
    212         xbuf1 = main->xbuffer[1][ci];
    213         /* First copy the workspace pointers as-is */
    214         buf = main->buffer[ci];
    215         for ( i = 0; i < rgroup * ( M + 2 ); i++ ) {
    216             xbuf0[i] = xbuf1[i] = buf[i];
    217         }
    218         /* In the second list, put the last four row groups in swapped order */
    219         for ( i = 0; i < rgroup * 2; i++ ) {
    220             xbuf1[rgroup * ( M - 2 ) + i] = buf[rgroup * M + i];
    221             xbuf1[rgroup * M + i] = buf[rgroup * ( M - 2 ) + i];
    222         }
    223         /* The wraparound pointers at top and bottom will be filled later
    224          * (see set_wraparound_pointers, below).  Initially we want the "above"
    225          * pointers to duplicate the first actual data line.  This only needs
    226          * to happen in xbuffer[0].
    227          */
    228         for ( i = 0; i < rgroup; i++ ) {
    229             xbuf0[i - rgroup] = xbuf0[0];
    230         }
    231     }
    232 }
    233 
    234 
    235 LOCAL void
    236 set_wraparound_pointers( j_decompress_ptr cinfo ) {
    237 /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
    238  * This changes the pointer list state from top-of-image to the normal state.
    239  */
    240     my_main_ptr main = (my_main_ptr) cinfo->main;
    241     int ci, i, rgroup;
    242     int M = cinfo->min_DCT_scaled_size;
    243     jpeg_component_info * compptr;
    244     JSAMPARRAY xbuf0, xbuf1;
    245 
    246     for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    247           ci++, compptr++ ) {
    248         rgroup = ( compptr->v_samp_factor * compptr->DCT_scaled_size ) /
    249                  cinfo->min_DCT_scaled_size; /* height of a row group of component */
    250         xbuf0 = main->xbuffer[0][ci];
    251         xbuf1 = main->xbuffer[1][ci];
    252         for ( i = 0; i < rgroup; i++ ) {
    253             xbuf0[i - rgroup] = xbuf0[rgroup * ( M + 1 ) + i];
    254             xbuf1[i - rgroup] = xbuf1[rgroup * ( M + 1 ) + i];
    255             xbuf0[rgroup * ( M + 2 ) + i] = xbuf0[i];
    256             xbuf1[rgroup * ( M + 2 ) + i] = xbuf1[i];
    257         }
    258     }
    259 }
    260 
    261 
    262 LOCAL void
    263 set_bottom_pointers( j_decompress_ptr cinfo ) {
    264 /* Change the pointer lists to duplicate the last sample row at the bottom
    265  * of the image.  whichptr indicates which xbuffer holds the final iMCU row.
    266  * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
    267  */
    268     my_main_ptr main = (my_main_ptr) cinfo->main;
    269     int ci, i, rgroup, iMCUheight, rows_left;
    270     jpeg_component_info * compptr;
    271     JSAMPARRAY xbuf;
    272 
    273     for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    274           ci++, compptr++ ) {
    275         /* Count sample rows in one iMCU row and in one row group */
    276         iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
    277         rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
    278         /* Count nondummy sample rows remaining for this component */
    279         rows_left = (int) ( compptr->downsampled_height % (JDIMENSION) iMCUheight );
    280         if ( rows_left == 0 ) {
    281             rows_left = iMCUheight;
    282         }
    283         /* Count nondummy row groups.  Should get same answer for each component,
    284          * so we need only do it once.
    285          */
    286         if ( ci == 0 ) {
    287             main->rowgroups_avail = (JDIMENSION) ( ( rows_left - 1 ) / rgroup + 1 );
    288         }
    289         /* Duplicate the last real sample row rgroup*2 times; this pads out the
    290          * last partial rowgroup and ensures at least one full rowgroup of context.
    291          */
    292         xbuf = main->xbuffer[main->whichptr][ci];
    293         for ( i = 0; i < rgroup * 2; i++ ) {
    294             xbuf[rows_left + i] = xbuf[rows_left - 1];
    295         }
    296     }
    297 }
    298 
    299 
    300 /*
    301  * Initialize for a processing pass.
    302  */
    303 
    304 METHODDEF void
    305 start_pass_main( j_decompress_ptr cinfo, J_BUF_MODE pass_mode ) {
    306     my_main_ptr main = (my_main_ptr) cinfo->main;
    307 
    308     switch ( pass_mode ) {
    309         case JBUF_PASS_THRU:
    310             if ( cinfo->upsample->need_context_rows ) {
    311                 main->pub.process_data = process_data_context_main;
    312                 make_funny_pointers( cinfo );/* Create the xbuffer[] lists */
    313                 main->whichptr = 0;/* Read first iMCU row into xbuffer[0] */
    314                 main->context_state = CTX_PREPARE_FOR_IMCU;
    315                 main->iMCU_row_ctr = 0;
    316             } else {
    317                 /* Simple case with no context needed */
    318                 main->pub.process_data = process_data_simple_main;
    319             }
    320             main->buffer_full = FALSE;/* Mark buffer empty */
    321             main->rowgroup_ctr = 0;
    322             break;
    323 #ifdef QUANT_2PASS_SUPPORTED
    324         case JBUF_CRANK_DEST:
    325             /* For last pass of 2-pass quantization, just crank the postprocessor */
    326             main->pub.process_data = process_data_crank_post;
    327             break;
    328 #endif
    329         default:
    330             ERREXIT( cinfo, JERR_BAD_BUFFER_MODE );
    331             break;
    332     }
    333 }
    334 
    335 
    336 /*
    337  * Process some data.
    338  * This handles the simple case where no context is required.
    339  */
    340 
    341 METHODDEF void
    342 process_data_simple_main( j_decompress_ptr cinfo,
    343                           JSAMPARRAY output_buf, JDIMENSION * out_row_ctr,
    344                           JDIMENSION out_rows_avail ) {
    345     my_main_ptr main = (my_main_ptr) cinfo->main;
    346     JDIMENSION rowgroups_avail;
    347 
    348     /* Read input data if we haven't filled the main buffer yet */
    349     if ( !main->buffer_full ) {
    350         if ( !( *cinfo->coef->decompress_data )( cinfo, main->buffer ) ) {
    351             return;
    352         }               /* suspension forced, can do nothing more */
    353         main->buffer_full = TRUE;/* OK, we have an iMCU row to work with */
    354     }
    355 
    356     /* There are always min_DCT_scaled_size row groups in an iMCU row. */
    357     rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
    358     /* Note: at the bottom of the image, we may pass extra garbage row groups
    359      * to the postprocessor.  The postprocessor has to check for bottom
    360      * of image anyway (at row resolution), so no point in us doing it too.
    361      */
    362 
    363     /* Feed the postprocessor */
    364     ( *cinfo->post->post_process_data )( cinfo, main->buffer,
    365                                          &main->rowgroup_ctr, rowgroups_avail,
    366                                          output_buf, out_row_ctr, out_rows_avail );
    367 
    368     /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
    369     if ( main->rowgroup_ctr >= rowgroups_avail ) {
    370         main->buffer_full = FALSE;
    371         main->rowgroup_ctr = 0;
    372     }
    373 }
    374 
    375 
    376 /*
    377  * Process some data.
    378  * This handles the case where context rows must be provided.
    379  */
    380 
    381 METHODDEF void
    382 process_data_context_main( j_decompress_ptr cinfo,
    383                            JSAMPARRAY output_buf, JDIMENSION * out_row_ctr,
    384                            JDIMENSION out_rows_avail ) {
    385     my_main_ptr main = (my_main_ptr) cinfo->main;
    386 
    387     /* Read input data if we haven't filled the main buffer yet */
    388     if ( !main->buffer_full ) {
    389         if ( !( *cinfo->coef->decompress_data )( cinfo,
    390                                                  main->xbuffer[main->whichptr] ) ) {
    391             return;
    392         }               /* suspension forced, can do nothing more */
    393         main->buffer_full = TRUE;/* OK, we have an iMCU row to work with */
    394         main->iMCU_row_ctr++; /* count rows received */
    395     }
    396 
    397     /* Postprocessor typically will not swallow all the input data it is handed
    398      * in one call (due to filling the output buffer first).  Must be prepared
    399      * to exit and restart.  This switch lets us keep track of how far we got.
    400      * Note that each case falls through to the next on successful completion.
    401      */
    402     switch ( main->context_state ) {
    403         case CTX_POSTPONED_ROW:
    404             /* Call postprocessor using previously set pointers for postponed row */
    405             ( *cinfo->post->post_process_data )( cinfo, main->xbuffer[main->whichptr],
    406                                                  &main->rowgroup_ctr, main->rowgroups_avail,
    407                                                  output_buf, out_row_ctr, out_rows_avail );
    408             if ( main->rowgroup_ctr < main->rowgroups_avail ) {
    409                 return;
    410             }           /* Need to suspend */
    411             main->context_state = CTX_PREPARE_FOR_IMCU;
    412             if ( *out_row_ctr >= out_rows_avail ) {
    413                 return;
    414             }           /* Postprocessor exactly filled output buf */
    415             /*FALLTHROUGH*/
    416         case CTX_PREPARE_FOR_IMCU:
    417             /* Prepare to process first M-1 row groups of this iMCU row */
    418             main->rowgroup_ctr = 0;
    419             main->rowgroups_avail = (JDIMENSION) ( cinfo->min_DCT_scaled_size - 1 );
    420             /* Check for bottom of image: if so, tweak pointers to "duplicate"
    421              * the last sample row, and adjust rowgroups_avail to ignore padding rows.
    422              */
    423             if ( main->iMCU_row_ctr == cinfo->total_iMCU_rows ) {
    424                 set_bottom_pointers( cinfo );
    425             }
    426             main->context_state = CTX_PROCESS_IMCU;
    427             /*FALLTHROUGH*/
    428         case CTX_PROCESS_IMCU:
    429             /* Call postprocessor using previously set pointers */
    430             ( *cinfo->post->post_process_data )( cinfo, main->xbuffer[main->whichptr],
    431                                                  &main->rowgroup_ctr, main->rowgroups_avail,
    432                                                  output_buf, out_row_ctr, out_rows_avail );
    433             if ( main->rowgroup_ctr < main->rowgroups_avail ) {
    434                 return;
    435             }           /* Need to suspend */
    436             /* After the first iMCU, change wraparound pointers to normal state */
    437             if ( main->iMCU_row_ctr == 1 ) {
    438                 set_wraparound_pointers( cinfo );
    439             }
    440             /* Prepare to load new iMCU row using other xbuffer list */
    441             main->whichptr ^= 1;/* 0=>1 or 1=>0 */
    442             main->buffer_full = FALSE;
    443             /* Still need to process last row group of this iMCU row, */
    444             /* which is saved at index M+1 of the other xbuffer */
    445             main->rowgroup_ctr = (JDIMENSION) ( cinfo->min_DCT_scaled_size + 1 );
    446             main->rowgroups_avail = (JDIMENSION) ( cinfo->min_DCT_scaled_size + 2 );
    447             main->context_state = CTX_POSTPONED_ROW;
    448     }
    449 }
    450 
    451 
    452 /*
    453  * Process some data.
    454  * Final pass of two-pass quantization: just call the postprocessor.
    455  * Source data will be the postprocessor controller's internal buffer.
    456  */
    457 
    458 #ifdef QUANT_2PASS_SUPPORTED
    459 
    460 METHODDEF void
    461 process_data_crank_post( j_decompress_ptr cinfo,
    462                          JSAMPARRAY output_buf, JDIMENSION * out_row_ctr,
    463                          JDIMENSION out_rows_avail ) {
    464     ( *cinfo->post->post_process_data )( cinfo, (JSAMPIMAGE) NULL,
    465                                          (JDIMENSION *) NULL, (JDIMENSION) 0,
    466                                          output_buf, out_row_ctr, out_rows_avail );
    467 }
    468 
    469 #endif /* QUANT_2PASS_SUPPORTED */
    470 
    471 
    472 /*
    473  * Initialize main buffer controller.
    474  */
    475 
    476 GLOBAL void
    477 jinit_d_main_controller( j_decompress_ptr cinfo, boolean need_full_buffer ) {
    478     my_main_ptr main;
    479     int ci, rgroup, ngroups;
    480     jpeg_component_info * compptr;
    481 
    482     main = (my_main_ptr)
    483            ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
    484                                         SIZEOF( my_main_controller ) );
    485     cinfo->main = (struct jpeg_d_main_controller *) main;
    486     main->pub.start_pass = start_pass_main;
    487 
    488     if ( need_full_buffer ) {/* shouldn't happen */
    489         ERREXIT( cinfo, JERR_BAD_BUFFER_MODE );
    490     }
    491 
    492     /* Allocate the workspace.
    493      * ngroups is the number of row groups we need.
    494      */
    495     if ( cinfo->upsample->need_context_rows ) {
    496         if ( cinfo->min_DCT_scaled_size < 2 ) {/* unsupported, see comments above */
    497             ERREXIT( cinfo, JERR_NOTIMPL );
    498         }
    499         alloc_funny_pointers( cinfo );/* Alloc space for xbuffer[] lists */
    500         ngroups = cinfo->min_DCT_scaled_size + 2;
    501     } else {
    502         ngroups = cinfo->min_DCT_scaled_size;
    503     }
    504 
    505     for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    506           ci++, compptr++ ) {
    507         rgroup = ( compptr->v_samp_factor * compptr->DCT_scaled_size ) /
    508                  cinfo->min_DCT_scaled_size; /* height of a row group of component */
    509         main->buffer[ci] = ( *cinfo->mem->alloc_sarray )
    510                            ( (j_common_ptr) cinfo, JPOOL_IMAGE,
    511                             compptr->width_in_blocks * compptr->DCT_scaled_size,
    512                             (JDIMENSION) ( rgroup * ngroups ) );
    513     }
    514 }