DOOM-3-BFG

DOOM 3 BFG Edition
Log | Files | Refs

jfdctflt.cpp (5820B)


      1 /*
      2  * jfdctflt.c
      3  *
      4  * Copyright (C) 1994, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains a floating-point implementation of the
      9  * forward DCT (Discrete Cosine Transform).
     10  *
     11  * This implementation should be more accurate than either of the integer
     12  * DCT implementations.  However, it may not give the same results on all
     13  * machines because of differences in roundoff behavior.  Speed will depend
     14  * on the hardware's floating point capacity.
     15  *
     16  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
     17  * on each column.  Direct algorithms are also available, but they are
     18  * much more complex and seem not to be any faster when reduced to code.
     19  *
     20  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     21  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     22  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     23  * JPEG textbook (see REFERENCES section in file README).  The following code
     24  * is based directly on figure 4-8 in P&M.
     25  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     26  * possible to arrange the computation so that many of the multiplies are
     27  * simple scalings of the final outputs.  These multiplies can then be
     28  * folded into the multiplications or divisions by the JPEG quantization
     29  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     30  * to be done in the DCT itself.
     31  * The primary disadvantage of this method is that with a fixed-point
     32  * implementation, accuracy is lost due to imprecise representation of the
     33  * scaled quantization values.  However, that problem does not arise if
     34  * we use floating point arithmetic.
     35  */
     36 
     37 #define JPEG_INTERNALS
     38 #include "jinclude.h"
     39 #include "jpeglib.h"
     40 #include "jdct.h"        /* Private declarations for DCT subsystem */
     41 
     42 #ifdef DCT_FLOAT_SUPPORTED
     43 
     44 
     45 /*
     46  * This module is specialized to the case DCTSIZE = 8.
     47  */
     48 
     49 #if DCTSIZE != 8
     50 Sorry, this code only copes with 8 x8 DCTs.  /* deliberate syntax err */
     51     #endif
     52 
     53 
     54 /*
     55  * Perform the forward DCT on one block of samples.
     56  */
     57 
     58 GLOBAL void
     59 jpeg_fdct_float( FAST_FLOAT * data ) {
     60     FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     61     FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
     62     FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
     63     FAST_FLOAT * dataptr;
     64     int ctr;
     65 
     66     /* Pass 1: process rows. */
     67 
     68     dataptr = data;
     69     for ( ctr = DCTSIZE - 1; ctr >= 0; ctr-- ) {
     70         tmp0 = dataptr[0] + dataptr[7];
     71         tmp7 = dataptr[0] - dataptr[7];
     72         tmp1 = dataptr[1] + dataptr[6];
     73         tmp6 = dataptr[1] - dataptr[6];
     74         tmp2 = dataptr[2] + dataptr[5];
     75         tmp5 = dataptr[2] - dataptr[5];
     76         tmp3 = dataptr[3] + dataptr[4];
     77         tmp4 = dataptr[3] - dataptr[4];
     78 
     79         /* Even part */
     80 
     81         tmp10 = tmp0 + tmp3;/* phase 2 */
     82         tmp13 = tmp0 - tmp3;
     83         tmp11 = tmp1 + tmp2;
     84         tmp12 = tmp1 - tmp2;
     85 
     86         dataptr[0] = tmp10 + tmp11;/* phase 3 */
     87         dataptr[4] = tmp10 - tmp11;
     88 
     89         z1 = ( tmp12 + tmp13 ) * ( (FAST_FLOAT) 0.707106781 );/* c4 */
     90         dataptr[2] = tmp13 + z1;/* phase 5 */
     91         dataptr[6] = tmp13 - z1;
     92 
     93         /* Odd part */
     94 
     95         tmp10 = tmp4 + tmp5;/* phase 2 */
     96         tmp11 = tmp5 + tmp6;
     97         tmp12 = tmp6 + tmp7;
     98 
     99         /* The rotator is modified from fig 4-8 to avoid extra negations. */
    100         z5 = ( tmp10 - tmp12 ) * ( (FAST_FLOAT) 0.382683433 );/* c6 */
    101         z2 = ( (FAST_FLOAT) 0.541196100 ) * tmp10 + z5;/* c2-c6 */
    102         z4 = ( (FAST_FLOAT) 1.306562965 ) * tmp12 + z5;/* c2+c6 */
    103         z3 = tmp11 * ( (FAST_FLOAT) 0.707106781 );/* c4 */
    104 
    105         z11 = tmp7 + z3;    /* phase 5 */
    106         z13 = tmp7 - z3;
    107 
    108         dataptr[5] = z13 + z2;/* phase 6 */
    109         dataptr[3] = z13 - z2;
    110         dataptr[1] = z11 + z4;
    111         dataptr[7] = z11 - z4;
    112 
    113         dataptr += DCTSIZE; /* advance pointer to next row */
    114     }
    115 
    116     /* Pass 2: process columns. */
    117 
    118     dataptr = data;
    119     for ( ctr = DCTSIZE - 1; ctr >= 0; ctr-- ) {
    120         tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];
    121         tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];
    122         tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];
    123         tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];
    124         tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];
    125         tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];
    126         tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];
    127         tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];
    128 
    129         /* Even part */
    130 
    131         tmp10 = tmp0 + tmp3;/* phase 2 */
    132         tmp13 = tmp0 - tmp3;
    133         tmp11 = tmp1 + tmp2;
    134         tmp12 = tmp1 - tmp2;
    135 
    136         dataptr[DCTSIZE * 0] = tmp10 + tmp11;/* phase 3 */
    137         dataptr[DCTSIZE * 4] = tmp10 - tmp11;
    138 
    139         z1 = ( tmp12 + tmp13 ) * ( (FAST_FLOAT) 0.707106781 );/* c4 */
    140         dataptr[DCTSIZE * 2] = tmp13 + z1;/* phase 5 */
    141         dataptr[DCTSIZE * 6] = tmp13 - z1;
    142 
    143         /* Odd part */
    144 
    145         tmp10 = tmp4 + tmp5;/* phase 2 */
    146         tmp11 = tmp5 + tmp6;
    147         tmp12 = tmp6 + tmp7;
    148 
    149         /* The rotator is modified from fig 4-8 to avoid extra negations. */
    150         z5 = ( tmp10 - tmp12 ) * ( (FAST_FLOAT) 0.382683433 );/* c6 */
    151         z2 = ( (FAST_FLOAT) 0.541196100 ) * tmp10 + z5;/* c2-c6 */
    152         z4 = ( (FAST_FLOAT) 1.306562965 ) * tmp12 + z5;/* c2+c6 */
    153         z3 = tmp11 * ( (FAST_FLOAT) 0.707106781 );/* c4 */
    154 
    155         z11 = tmp7 + z3;    /* phase 5 */
    156         z13 = tmp7 - z3;
    157 
    158         dataptr[DCTSIZE * 5] = z13 + z2;/* phase 6 */
    159         dataptr[DCTSIZE * 3] = z13 - z2;
    160         dataptr[DCTSIZE * 1] = z11 + z4;
    161         dataptr[DCTSIZE * 7] = z11 - z4;
    162 
    163         dataptr++;      /* advance pointer to next column */
    164     }
    165 }
    166 
    167 #endif /* DCT_FLOAT_SUPPORTED */