DOOM-3-BFG

DOOM 3 BFG Edition
Log | Files | Refs

jmemmgr.cpp (46302B)


      1 /*
      2  * jmemmgr.c
      3  *
      4  * Copyright (C) 1991-1995, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains the JPEG system-independent memory management
      9  * routines.  This code is usable across a wide variety of machines; most
     10  * of the system dependencies have been isolated in a separate file.
     11  * The major functions provided here are:
     12  *   * pool-based allocation and freeing of memory;
     13  *   * policy decisions about how to divide available memory among the
     14  *     virtual arrays;
     15  *   * control logic for swapping virtual arrays between main memory and
     16  *     backing storage.
     17  * The separate system-dependent file provides the actual backing-storage
     18  * access code, and it contains the policy decision about how much total
     19  * main memory to use.
     20  * This file is system-dependent in the sense that some of its functions
     21  * are unnecessary in some systems.  For example, if there is enough virtual
     22  * memory so that backing storage will never be used, much of the virtual
     23  * array control logic could be removed.  (Of course, if you have that much
     24  * memory then you shouldn't care about a little bit of unused code...)
     25  */
     26 
     27 #define JPEG_INTERNALS
     28 #define AM_MEMORY_MANAGER   /* we define jvirt_Xarray_control structs */
     29 #include "jinclude.h"
     30 #include "jpeglib.h"
     31 #include "jmemsys.h"     /* import the system-dependent declarations */
     32 
     33 // bph id software added:
     34 #define NO_GETENV
     35 
     36 #ifndef NO_GETENV
     37 #ifndef HAVE_STDLIB_H       /* <stdlib.h> should declare getenv() */
     38 extern char * getenv JPP( (const char * name) );
     39 #endif
     40 #endif
     41 
     42 
     43 /*
     44  * Some important notes:
     45  *   The allocation routines provided here must never return NULL.
     46  *   They should exit to error_exit if unsuccessful.
     47  *
     48  *   It's not a good idea to try to merge the sarray and barray routines,
     49  *   even though they are textually almost the same, because samples are
     50  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
     51  *   in machines where byte pointers have a different representation from
     52  *   word pointers, the resulting machine code could not be the same.
     53  */
     54 
     55 
     56 /*
     57  * Many machines require storage alignment: longs must start on 4-byte
     58  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
     59  * always returns pointers that are multiples of the worst-case alignment
     60  * requirement, and we had better do so too.
     61  * There isn't any really portable way to determine the worst-case alignment
     62  * requirement.  This module assumes that the alignment requirement is
     63  * multiples of sizeof(ALIGN_TYPE).
     64  * By default, we define ALIGN_TYPE as double.  This is necessary on some
     65  * workstations (where doubles really do need 8-byte alignment) and will work
     66  * fine on nearly everything.  If your machine has lesser alignment needs,
     67  * you can save a few bytes by making ALIGN_TYPE smaller.
     68  * The only place I know of where this will NOT work is certain Macintosh
     69  * 680x0 compilers that define double as a 10-byte IEEE extended float.
     70  * Doing 10-byte alignment is counterproductive because longwords won't be
     71  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
     72  * such a compiler.
     73  */
     74 
     75 #ifndef ALIGN_TYPE      /* so can override from jconfig.h */
     76 #define ALIGN_TYPE  double
     77 #endif
     78 
     79 
     80 /*
     81  * We allocate objects from "pools", where each pool is gotten with a single
     82  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
     83  * overhead within a pool, except for alignment padding.  Each pool has a
     84  * header with a link to the next pool of the same class.
     85  * Small and large pool headers are identical except that the latter's
     86  * link pointer must be FAR on 80x86 machines.
     87  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
     88  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
     89  * of the alignment requirement of ALIGN_TYPE.
     90  */
     91 
     92 typedef union small_pool_struct * small_pool_ptr;
     93 
     94 typedef union small_pool_struct {
     95     struct {
     96         small_pool_ptr next;/* next in list of pools */
     97         size_t bytes_used;  /* how many bytes already used within pool */
     98         size_t bytes_left;  /* bytes still available in this pool */
     99     } hdr;
    100     ALIGN_TYPE dummy;   /* included in union to ensure alignment */
    101 } small_pool_hdr;
    102 
    103 typedef union large_pool_struct FAR * large_pool_ptr;
    104 
    105 typedef union large_pool_struct {
    106     struct {
    107         large_pool_ptr next;/* next in list of pools */
    108         size_t bytes_used;  /* how many bytes already used within pool */
    109         size_t bytes_left;  /* bytes still available in this pool */
    110     } hdr;
    111     ALIGN_TYPE dummy;   /* included in union to ensure alignment */
    112 } large_pool_hdr;
    113 
    114 
    115 /*
    116  * Here is the full definition of a memory manager object.
    117  */
    118 
    119 typedef struct {
    120     struct jpeg_memory_mgr pub; /* public fields */
    121 
    122     /* Each pool identifier (lifetime class) names a linked list of pools. */
    123     small_pool_ptr small_list[JPOOL_NUMPOOLS];
    124     large_pool_ptr large_list[JPOOL_NUMPOOLS];
    125 
    126     /* Since we only have one lifetime class of virtual arrays, only one
    127      * linked list is necessary (for each datatype).  Note that the virtual
    128      * array control blocks being linked together are actually stored somewhere
    129      * in the small-pool list.
    130      */
    131     jvirt_sarray_ptr virt_sarray_list;
    132     jvirt_barray_ptr virt_barray_list;
    133 
    134     /* This counts total space obtained from jpeg_get_small/large */
    135     long total_space_allocated;
    136 
    137     /* alloc_sarray and alloc_barray set this value for use by virtual
    138      * array routines.
    139      */
    140     JDIMENSION last_rowsperchunk;/* from most recent alloc_sarray/barray */
    141 } my_memory_mgr;
    142 
    143 typedef my_memory_mgr * my_mem_ptr;
    144 
    145 
    146 /*
    147  * The control blocks for virtual arrays.
    148  * Note that these blocks are allocated in the "small" pool area.
    149  * System-dependent info for the associated backing store (if any) is hidden
    150  * inside the backing_store_info struct.
    151  */
    152 
    153 struct jvirt_sarray_control {
    154     JSAMPARRAY         mem_buffer; /* => the in-memory buffer */
    155     JDIMENSION         rows_in_array; /* total virtual array height */
    156     JDIMENSION         samplesperrow; /* width of array (and of memory buffer) */
    157     JDIMENSION         maxaccess; /* max rows accessed by access_virt_sarray */
    158     JDIMENSION         rows_in_mem; /* height of memory buffer */
    159     JDIMENSION         rowsperchunk; /* allocation chunk size in mem_buffer */
    160     JDIMENSION         cur_start_row; /* first logical row # in the buffer */
    161     JDIMENSION         first_undef_row; /* row # of first uninitialized row */
    162     boolean            pre_zero; /* pre-zero mode requested? */
    163     boolean            dirty; /* do current buffer contents need written? */
    164     boolean            b_s_open; /* is backing-store data valid? */
    165     jvirt_sarray_ptr   next;/* link to next virtual sarray control block */
    166     backing_store_info b_s_info;/* System-dependent control info */
    167 };
    168 
    169 struct jvirt_barray_control {
    170     JBLOCKARRAY        mem_buffer; /* => the in-memory buffer */
    171     JDIMENSION         rows_in_array; /* total virtual array height */
    172     JDIMENSION         blocksperrow; /* width of array (and of memory buffer) */
    173     JDIMENSION         maxaccess; /* max rows accessed by access_virt_barray */
    174     JDIMENSION         rows_in_mem; /* height of memory buffer */
    175     JDIMENSION         rowsperchunk; /* allocation chunk size in mem_buffer */
    176     JDIMENSION         cur_start_row; /* first logical row # in the buffer */
    177     JDIMENSION         first_undef_row; /* row # of first uninitialized row */
    178     boolean            pre_zero; /* pre-zero mode requested? */
    179     boolean            dirty; /* do current buffer contents need written? */
    180     boolean            b_s_open; /* is backing-store data valid? */
    181     jvirt_barray_ptr   next;/* link to next virtual barray control block */
    182     backing_store_info b_s_info;/* System-dependent control info */
    183 };
    184 
    185 
    186 #ifdef MEM_STATS        /* optional extra stuff for statistics */
    187 
    188 LOCAL void
    189 print_mem_stats( j_common_ptr cinfo, int pool_id ) {
    190     my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    191     small_pool_ptr shdr_ptr;
    192     large_pool_ptr lhdr_ptr;
    193 
    194     /* Since this is only a debugging stub, we can cheat a little by using
    195      * fprintf directly rather than going through the trace message code.
    196      * This is helpful because message parm array can't handle longs.
    197      */
    198     fprintf( stderr, "Freeing pool %d, total space = %ld\n",
    199              pool_id, mem->total_space_allocated );
    200 
    201     for ( lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
    202           lhdr_ptr = lhdr_ptr->hdr.next ) {
    203         fprintf( stderr, "  Large chunk used %ld\n",
    204                  (long) lhdr_ptr->hdr.bytes_used );
    205     }
    206 
    207     for ( shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
    208           shdr_ptr = shdr_ptr->hdr.next ) {
    209         fprintf( stderr, "  Small chunk used %ld free %ld\n",
    210                  (long) shdr_ptr->hdr.bytes_used,
    211                  (long) shdr_ptr->hdr.bytes_left );
    212     }
    213 }
    214 
    215 #endif /* MEM_STATS */
    216 
    217 
    218 LOCAL void
    219 out_of_memory( j_common_ptr cinfo, int which ) {
    220 /* Report an out-of-memory error and stop execution */
    221 /* If we compiled MEM_STATS support, report alloc requests before dying */
    222 #ifdef MEM_STATS
    223     cinfo->err->trace_level = 2;/* force self_destruct to report stats */
    224 #endif
    225     ERREXIT1( cinfo, JERR_OUT_OF_MEMORY, which );
    226 }
    227 
    228 
    229 /*
    230  * Allocation of "small" objects.
    231  *
    232  * For these, we use pooled storage.  When a new pool must be created,
    233  * we try to get enough space for the current request plus a "slop" factor,
    234  * where the slop will be the amount of leftover space in the new pool.
    235  * The speed vs. space tradeoff is largely determined by the slop values.
    236  * A different slop value is provided for each pool class (lifetime),
    237  * and we also distinguish the first pool of a class from later ones.
    238  * NOTE: the values given work fairly well on both 16- and 32-bit-int
    239  * machines, but may be too small if longs are 64 bits or more.
    240  */
    241 
    242 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = {
    243     1600,           /* first PERMANENT pool */
    244     16000           /* first IMAGE pool */
    245 };
    246 
    247 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = {
    248     0,          /* additional PERMANENT pools */
    249     5000            /* additional IMAGE pools */
    250 };
    251 
    252 #define MIN_SLOP  50        /* greater than 0 to avoid futile looping */
    253 
    254 
    255 METHODDEF void *
    256 alloc_small( j_common_ptr cinfo, int pool_id, size_t sizeofobject ) {
    257 /* Allocate a "small" object */
    258     my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    259     small_pool_ptr hdr_ptr, prev_hdr_ptr;
    260     char * data_ptr;
    261     size_t odd_bytes, min_request, slop;
    262 
    263     /* Check for unsatisfiable request (do now to ensure no overflow below) */
    264     if ( sizeofobject > (size_t) ( MAX_ALLOC_CHUNK - SIZEOF( small_pool_hdr ) ) ) {
    265         out_of_memory( cinfo, 1 );
    266     }                           /* request exceeds malloc's ability */
    267 
    268     /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
    269     odd_bytes = sizeofobject % SIZEOF( ALIGN_TYPE );
    270     if ( odd_bytes > 0 ) {
    271         sizeofobject += SIZEOF( ALIGN_TYPE ) - odd_bytes;
    272     }
    273 
    274     /* See if space is available in any existing pool */
    275     if ( ( pool_id < 0 ) || ( pool_id >= JPOOL_NUMPOOLS ) ) {
    276         ERREXIT1( cinfo, JERR_BAD_POOL_ID, pool_id );
    277     }                                           /* safety check */
    278     prev_hdr_ptr = NULL;
    279     hdr_ptr = mem->small_list[pool_id];
    280     while ( hdr_ptr != NULL ) {
    281         if ( hdr_ptr->hdr.bytes_left >= sizeofobject ) {
    282             break;
    283         }               /* found pool with enough space */
    284         prev_hdr_ptr = hdr_ptr;
    285         hdr_ptr = hdr_ptr->hdr.next;
    286     }
    287 
    288     /* Time to make a new pool? */
    289     if ( hdr_ptr == NULL ) {
    290         /* min_request is what we need now, slop is what will be leftover */
    291         min_request = sizeofobject + SIZEOF( small_pool_hdr );
    292         if ( prev_hdr_ptr == NULL ) {/* first pool in class? */
    293             slop = first_pool_slop[pool_id];
    294         } else {
    295             slop = extra_pool_slop[pool_id];
    296         }
    297         /* Don't ask for more than MAX_ALLOC_CHUNK */
    298         if ( slop > (size_t) ( MAX_ALLOC_CHUNK - min_request ) ) {
    299             slop = (size_t) ( MAX_ALLOC_CHUNK - min_request );
    300         }
    301         /* Try to get space, if fail reduce slop and try again */
    302         for (;; ) {
    303             hdr_ptr = (small_pool_ptr) jpeg_get_small( cinfo, min_request + slop );
    304             if ( hdr_ptr != NULL ) {
    305                 break;
    306             }
    307             slop /= 2;
    308             if ( slop < MIN_SLOP ) {/* give up when it gets real small */
    309                 out_of_memory( cinfo, 2 );
    310             }                /* jpeg_get_small failed */
    311         }
    312         mem->total_space_allocated += min_request + slop;
    313         /* Success, initialize the new pool header and add to end of list */
    314         hdr_ptr->hdr.next = NULL;
    315         hdr_ptr->hdr.bytes_used = 0;
    316         hdr_ptr->hdr.bytes_left = sizeofobject + slop;
    317         if ( prev_hdr_ptr == NULL ) {/* first pool in class? */
    318             mem->small_list[pool_id] = hdr_ptr;
    319         } else {
    320             prev_hdr_ptr->hdr.next = hdr_ptr;
    321         }
    322     }
    323 
    324     /* OK, allocate the object from the current pool */
    325     data_ptr = (char *) ( hdr_ptr + 1 );/* point to first data byte in pool */
    326     data_ptr += hdr_ptr->hdr.bytes_used;/* point to place for object */
    327     hdr_ptr->hdr.bytes_used += sizeofobject;
    328     hdr_ptr->hdr.bytes_left -= sizeofobject;
    329 
    330     return (void *) data_ptr;
    331 }
    332 
    333 
    334 /*
    335  * Allocation of "large" objects.
    336  *
    337  * The external semantics of these are the same as "small" objects,
    338  * except that FAR pointers are used on 80x86.  However the pool
    339  * management heuristics are quite different.  We assume that each
    340  * request is large enough that it may as well be passed directly to
    341  * jpeg_get_large; the pool management just links everything together
    342  * so that we can free it all on demand.
    343  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
    344  * structures.  The routines that create these structures (see below)
    345  * deliberately bunch rows together to ensure a large request size.
    346  */
    347 
    348 METHODDEF void FAR *
    349 alloc_large( j_common_ptr cinfo, int pool_id, size_t sizeofobject ) {
    350 /* Allocate a "large" object */
    351     my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    352     large_pool_ptr hdr_ptr;
    353     size_t odd_bytes;
    354 
    355     /* Check for unsatisfiable request (do now to ensure no overflow below) */
    356     if ( sizeofobject > (size_t) ( MAX_ALLOC_CHUNK - SIZEOF( large_pool_hdr ) ) ) {
    357         out_of_memory( cinfo, 3 );
    358     }                           /* request exceeds malloc's ability */
    359 
    360     /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
    361     odd_bytes = sizeofobject % SIZEOF( ALIGN_TYPE );
    362     if ( odd_bytes > 0 ) {
    363         sizeofobject += SIZEOF( ALIGN_TYPE ) - odd_bytes;
    364     }
    365 
    366     /* Always make a new pool */
    367     if ( ( pool_id < 0 ) || ( pool_id >= JPOOL_NUMPOOLS ) ) {
    368         ERREXIT1( cinfo, JERR_BAD_POOL_ID, pool_id );
    369     }                                           /* safety check */
    370 
    371     hdr_ptr = (large_pool_ptr) jpeg_get_large( cinfo, sizeofobject +
    372                                               SIZEOF( large_pool_hdr ) );
    373     if ( hdr_ptr == NULL ) {
    374         out_of_memory( cinfo, 4 );
    375     }                           /* jpeg_get_large failed */
    376     mem->total_space_allocated += sizeofobject + SIZEOF( large_pool_hdr );
    377 
    378     /* Success, initialize the new pool header and add to list */
    379     hdr_ptr->hdr.next = mem->large_list[pool_id];
    380     /* We maintain space counts in each pool header for statistical purposes,
    381      * even though they are not needed for allocation.
    382      */
    383     hdr_ptr->hdr.bytes_used = sizeofobject;
    384     hdr_ptr->hdr.bytes_left = 0;
    385     mem->large_list[pool_id] = hdr_ptr;
    386 
    387     return (void FAR *) ( hdr_ptr + 1 );/* point to first data byte in pool */
    388 }
    389 
    390 
    391 /*
    392  * Creation of 2-D sample arrays.
    393  * The pointers are in near heap, the samples themselves in FAR heap.
    394  *
    395  * To minimize allocation overhead and to allow I/O of large contiguous
    396  * blocks, we allocate the sample rows in groups of as many rows as possible
    397  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
    398  * NB: the virtual array control routines, later in this file, know about
    399  * this chunking of rows.  The rowsperchunk value is left in the mem manager
    400  * object so that it can be saved away if this sarray is the workspace for
    401  * a virtual array.
    402  */
    403 
    404 METHODDEF JSAMPARRAY
    405 alloc_sarray( j_common_ptr cinfo, int pool_id,
    406               JDIMENSION samplesperrow, JDIMENSION numrows ) {
    407 /* Allocate a 2-D sample array */
    408     my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    409     JSAMPARRAY result;
    410     JSAMPROW workspace;
    411     JDIMENSION rowsperchunk, currow, i;
    412     long ltemp;
    413 
    414     /* Calculate max # of rows allowed in one allocation chunk */
    415     ltemp = ( MAX_ALLOC_CHUNK - SIZEOF( large_pool_hdr ) ) /
    416             ( (long) samplesperrow * SIZEOF( JSAMPLE ) );
    417     if ( ltemp <= 0 ) {
    418         ERREXIT( cinfo, JERR_WIDTH_OVERFLOW );
    419     }
    420     if ( ltemp < (long) numrows ) {
    421         rowsperchunk = (JDIMENSION) ltemp;
    422     } else {
    423         rowsperchunk = numrows;
    424     }
    425     mem->last_rowsperchunk = rowsperchunk;
    426 
    427     /* Get space for row pointers (small object) */
    428     result = (JSAMPARRAY) alloc_small( cinfo, pool_id,
    429                                       (size_t) ( numrows * SIZEOF( JSAMPROW ) ) );
    430 
    431     /* Get the rows themselves (large objects) */
    432     currow = 0;
    433     while ( currow < numrows ) {
    434         rowsperchunk = MIN( rowsperchunk, numrows - currow );
    435         workspace = (JSAMPROW) alloc_large( cinfo, pool_id,
    436                                            (size_t) ( (size_t) rowsperchunk * (size_t) samplesperrow
    437                                                      * SIZEOF( JSAMPLE ) ) );
    438         for ( i = rowsperchunk; i > 0; i-- ) {
    439             result[currow++] = workspace;
    440             workspace += samplesperrow;
    441         }
    442     }
    443 
    444     return result;
    445 }
    446 
    447 
    448 /*
    449  * Creation of 2-D coefficient-block arrays.
    450  * This is essentially the same as the code for sample arrays, above.
    451  */
    452 
    453 METHODDEF JBLOCKARRAY
    454 alloc_barray( j_common_ptr cinfo, int pool_id,
    455               JDIMENSION blocksperrow, JDIMENSION numrows ) {
    456 /* Allocate a 2-D coefficient-block array */
    457     my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    458     JBLOCKARRAY result;
    459     JBLOCKROW workspace;
    460     JDIMENSION rowsperchunk, currow, i;
    461     long ltemp;
    462 
    463     /* Calculate max # of rows allowed in one allocation chunk */
    464     ltemp = ( MAX_ALLOC_CHUNK - SIZEOF( large_pool_hdr ) ) /
    465             ( (long) blocksperrow * SIZEOF( JBLOCK ) );
    466     if ( ltemp <= 0 ) {
    467         ERREXIT( cinfo, JERR_WIDTH_OVERFLOW );
    468     }
    469     if ( ltemp < (long) numrows ) {
    470         rowsperchunk = (JDIMENSION) ltemp;
    471     } else {
    472         rowsperchunk = numrows;
    473     }
    474     mem->last_rowsperchunk = rowsperchunk;
    475 
    476     /* Get space for row pointers (small object) */
    477     result = (JBLOCKARRAY) alloc_small( cinfo, pool_id,
    478                                        (size_t) ( numrows * SIZEOF( JBLOCKROW ) ) );
    479 
    480     /* Get the rows themselves (large objects) */
    481     currow = 0;
    482     while ( currow < numrows ) {
    483         rowsperchunk = MIN( rowsperchunk, numrows - currow );
    484         workspace = (JBLOCKROW) alloc_large( cinfo, pool_id,
    485                                             (size_t) ( (size_t) rowsperchunk * (size_t) blocksperrow
    486                                                       * SIZEOF( JBLOCK ) ) );
    487         for ( i = rowsperchunk; i > 0; i-- ) {
    488             result[currow++] = workspace;
    489             workspace += blocksperrow;
    490         }
    491     }
    492 
    493     return result;
    494 }
    495 
    496 
    497 /*
    498  * About virtual array management:
    499  *
    500  * The above "normal" array routines are only used to allocate strip buffers
    501  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
    502  * are handled as "virtual" arrays.  The array is still accessed a strip at a
    503  * time, but the memory manager must save the whole array for repeated
    504  * accesses.  The intended implementation is that there is a strip buffer in
    505  * memory (as high as is possible given the desired memory limit), plus a
    506  * backing file that holds the rest of the array.
    507  *
    508  * The request_virt_array routines are told the total size of the image and
    509  * the maximum number of rows that will be accessed at once.  The in-memory
    510  * buffer must be at least as large as the maxaccess value.
    511  *
    512  * The request routines create control blocks but not the in-memory buffers.
    513  * That is postponed until realize_virt_arrays is called.  At that time the
    514  * total amount of space needed is known (approximately, anyway), so free
    515  * memory can be divided up fairly.
    516  *
    517  * The access_virt_array routines are responsible for making a specific strip
    518  * area accessible (after reading or writing the backing file, if necessary).
    519  * Note that the access routines are told whether the caller intends to modify
    520  * the accessed strip; during a read-only pass this saves having to rewrite
    521  * data to disk.  The access routines are also responsible for pre-zeroing
    522  * any newly accessed rows, if pre-zeroing was requested.
    523  *
    524  * In current usage, the access requests are usually for nonoverlapping
    525  * strips; that is, successive access start_row numbers differ by exactly
    526  * num_rows = maxaccess.  This means we can get good performance with simple
    527  * buffer dump/reload logic, by making the in-memory buffer be a multiple
    528  * of the access height; then there will never be accesses across bufferload
    529  * boundaries.  The code will still work with overlapping access requests,
    530  * but it doesn't handle bufferload overlaps very efficiently.
    531  */
    532 
    533 
    534 METHODDEF jvirt_sarray_ptr
    535 request_virt_sarray( j_common_ptr cinfo, int pool_id, boolean pre_zero,
    536                      JDIMENSION samplesperrow, JDIMENSION numrows,
    537                      JDIMENSION maxaccess ) {
    538 /* Request a virtual 2-D sample array */
    539     my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    540     jvirt_sarray_ptr result;
    541 
    542     /* Only IMAGE-lifetime virtual arrays are currently supported */
    543     if ( pool_id != JPOOL_IMAGE ) {
    544         ERREXIT1( cinfo, JERR_BAD_POOL_ID, pool_id );
    545     }                                           /* safety check */
    546 
    547     /* get control block */
    548     result = (jvirt_sarray_ptr) alloc_small( cinfo, pool_id,
    549                                             SIZEOF( struct jvirt_sarray_control ) );
    550 
    551     result->mem_buffer = NULL;  /* marks array not yet realized */
    552     result->rows_in_array = numrows;
    553     result->samplesperrow = samplesperrow;
    554     result->maxaccess = maxaccess;
    555     result->pre_zero = pre_zero;
    556     result->b_s_open = FALSE;/* no associated backing-store object */
    557     result->next = mem->virt_sarray_list;/* add to list of virtual arrays */
    558     mem->virt_sarray_list = result;
    559 
    560     return result;
    561 }
    562 
    563 
    564 METHODDEF jvirt_barray_ptr
    565 request_virt_barray( j_common_ptr cinfo, int pool_id, boolean pre_zero,
    566                      JDIMENSION blocksperrow, JDIMENSION numrows,
    567                      JDIMENSION maxaccess ) {
    568 /* Request a virtual 2-D coefficient-block array */
    569     my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    570     jvirt_barray_ptr result;
    571 
    572     /* Only IMAGE-lifetime virtual arrays are currently supported */
    573     if ( pool_id != JPOOL_IMAGE ) {
    574         ERREXIT1( cinfo, JERR_BAD_POOL_ID, pool_id );
    575     }                                           /* safety check */
    576 
    577     /* get control block */
    578     result = (jvirt_barray_ptr) alloc_small( cinfo, pool_id,
    579                                             SIZEOF( struct jvirt_barray_control ) );
    580 
    581     result->mem_buffer = NULL;  /* marks array not yet realized */
    582     result->rows_in_array = numrows;
    583     result->blocksperrow = blocksperrow;
    584     result->maxaccess = maxaccess;
    585     result->pre_zero = pre_zero;
    586     result->b_s_open = FALSE;/* no associated backing-store object */
    587     result->next = mem->virt_barray_list;/* add to list of virtual arrays */
    588     mem->virt_barray_list = result;
    589 
    590     return result;
    591 }
    592 
    593 
    594 METHODDEF void
    595 realize_virt_arrays( j_common_ptr cinfo ) {
    596 /* Allocate the in-memory buffers for any unrealized virtual arrays */
    597     my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    598     long space_per_minheight, maximum_space, avail_mem;
    599     long minheights, max_minheights;
    600     jvirt_sarray_ptr sptr;
    601     jvirt_barray_ptr bptr;
    602 
    603     /* Compute the minimum space needed (maxaccess rows in each buffer)
    604      * and the maximum space needed (full image height in each buffer).
    605      * These may be of use to the system-dependent jpeg_mem_available routine.
    606      */
    607     space_per_minheight = 0;
    608     maximum_space = 0;
    609     for ( sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next ) {
    610         if ( sptr->mem_buffer == NULL ) {/* if not realized yet */
    611             space_per_minheight += (long) sptr->maxaccess *
    612                                    (long) sptr->samplesperrow * SIZEOF( JSAMPLE );
    613             maximum_space += (long) sptr->rows_in_array *
    614                              (long) sptr->samplesperrow * SIZEOF( JSAMPLE );
    615         }
    616     }
    617     for ( bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next ) {
    618         if ( bptr->mem_buffer == NULL ) {/* if not realized yet */
    619             space_per_minheight += (long) bptr->maxaccess *
    620                                    (long) bptr->blocksperrow * SIZEOF( JBLOCK );
    621             maximum_space += (long) bptr->rows_in_array *
    622                              (long) bptr->blocksperrow * SIZEOF( JBLOCK );
    623         }
    624     }
    625 
    626     if ( space_per_minheight <= 0 ) {
    627         return;
    628     }               /* no unrealized arrays, no work */
    629 
    630     /* Determine amount of memory to actually use; this is system-dependent. */
    631     avail_mem = jpeg_mem_available( cinfo, space_per_minheight, maximum_space,
    632                                     mem->total_space_allocated );
    633 
    634     /* If the maximum space needed is available, make all the buffers full
    635      * height; otherwise parcel it out with the same number of minheights
    636      * in each buffer.
    637      */
    638     if ( avail_mem >= maximum_space ) {
    639         max_minheights = 1000000000L;
    640     } else {
    641         max_minheights = avail_mem / space_per_minheight;
    642         /* If there doesn't seem to be enough space, try to get the minimum
    643          * anyway.  This allows a "stub" implementation of jpeg_mem_available().
    644          */
    645         if ( max_minheights <= 0 ) {
    646             max_minheights = 1;
    647         }
    648     }
    649 
    650     /* Allocate the in-memory buffers and initialize backing store as needed. */
    651 
    652     for ( sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next ) {
    653         if ( sptr->mem_buffer == NULL ) {/* if not realized yet */
    654             minheights = ( (long) sptr->rows_in_array - 1L ) / sptr->maxaccess + 1L;
    655             if ( minheights <= max_minheights ) {
    656                 /* This buffer fits in memory */
    657                 sptr->rows_in_mem = sptr->rows_in_array;
    658             } else {
    659                 /* It doesn't fit in memory, create backing store. */
    660                 sptr->rows_in_mem = (JDIMENSION) ( max_minheights * sptr->maxaccess );
    661                 jpeg_open_backing_store( cinfo, &sptr->b_s_info,
    662                                         (long) sptr->rows_in_array *
    663                                         (long) sptr->samplesperrow *
    664                                         (long) SIZEOF( JSAMPLE ) );
    665                 sptr->b_s_open = TRUE;
    666             }
    667             sptr->mem_buffer = alloc_sarray( cinfo, JPOOL_IMAGE,
    668                                              sptr->samplesperrow, sptr->rows_in_mem );
    669             sptr->rowsperchunk = mem->last_rowsperchunk;
    670             sptr->cur_start_row = 0;
    671             sptr->first_undef_row = 0;
    672             sptr->dirty = FALSE;
    673         }
    674     }
    675 
    676     for ( bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next ) {
    677         if ( bptr->mem_buffer == NULL ) {/* if not realized yet */
    678             minheights = ( (long) bptr->rows_in_array - 1L ) / bptr->maxaccess + 1L;
    679             if ( minheights <= max_minheights ) {
    680                 /* This buffer fits in memory */
    681                 bptr->rows_in_mem = bptr->rows_in_array;
    682             } else {
    683                 /* It doesn't fit in memory, create backing store. */
    684                 bptr->rows_in_mem = (JDIMENSION) ( max_minheights * bptr->maxaccess );
    685                 jpeg_open_backing_store( cinfo, &bptr->b_s_info,
    686                                         (long) bptr->rows_in_array *
    687                                         (long) bptr->blocksperrow *
    688                                         (long) SIZEOF( JBLOCK ) );
    689                 bptr->b_s_open = TRUE;
    690             }
    691             bptr->mem_buffer = alloc_barray( cinfo, JPOOL_IMAGE,
    692                                              bptr->blocksperrow, bptr->rows_in_mem );
    693             bptr->rowsperchunk = mem->last_rowsperchunk;
    694             bptr->cur_start_row = 0;
    695             bptr->first_undef_row = 0;
    696             bptr->dirty = FALSE;
    697         }
    698     }
    699 }
    700 
    701 
    702 LOCAL void
    703 do_sarray_io( j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing ) {
    704 /* Do backing store read or write of a virtual sample array */
    705     long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    706 
    707     bytesperrow = (long) ptr->samplesperrow * SIZEOF( JSAMPLE );
    708     file_offset = ptr->cur_start_row * bytesperrow;
    709     /* Loop to read or write each allocation chunk in mem_buffer */
    710     for ( i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk ) {
    711         /* One chunk, but check for short chunk at end of buffer */
    712         rows = MIN( (long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i );
    713         /* Transfer no more than is currently defined */
    714         thisrow = (long) ptr->cur_start_row + i;
    715         rows = MIN( rows, (long) ptr->first_undef_row - thisrow );
    716         /* Transfer no more than fits in file */
    717         rows = MIN( rows, (long) ptr->rows_in_array - thisrow );
    718         if ( rows <= 0 ) {/* this chunk might be past end of file! */
    719             break;
    720         }
    721         byte_count = rows * bytesperrow;
    722         if ( writing ) {
    723             ( *ptr->b_s_info.write_backing_store )( cinfo, &ptr->b_s_info,
    724                                                     (void FAR *) ptr->mem_buffer[i],
    725                                                     file_offset, byte_count );
    726         } else {
    727             ( *ptr->b_s_info.read_backing_store )( cinfo, &ptr->b_s_info,
    728                                                    (void FAR *) ptr->mem_buffer[i],
    729                                                    file_offset, byte_count );
    730         }
    731         file_offset += byte_count;
    732     }
    733 }
    734 
    735 
    736 LOCAL void
    737 do_barray_io( j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing ) {
    738 /* Do backing store read or write of a virtual coefficient-block array */
    739     long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    740 
    741     bytesperrow = (long) ptr->blocksperrow * SIZEOF( JBLOCK );
    742     file_offset = ptr->cur_start_row * bytesperrow;
    743     /* Loop to read or write each allocation chunk in mem_buffer */
    744     for ( i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk ) {
    745         /* One chunk, but check for short chunk at end of buffer */
    746         rows = MIN( (long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i );
    747         /* Transfer no more than is currently defined */
    748         thisrow = (long) ptr->cur_start_row + i;
    749         rows = MIN( rows, (long) ptr->first_undef_row - thisrow );
    750         /* Transfer no more than fits in file */
    751         rows = MIN( rows, (long) ptr->rows_in_array - thisrow );
    752         if ( rows <= 0 ) {/* this chunk might be past end of file! */
    753             break;
    754         }
    755         byte_count = rows * bytesperrow;
    756         if ( writing ) {
    757             ( *ptr->b_s_info.write_backing_store )( cinfo, &ptr->b_s_info,
    758                                                     (void FAR *) ptr->mem_buffer[i],
    759                                                     file_offset, byte_count );
    760         } else {
    761             ( *ptr->b_s_info.read_backing_store )( cinfo, &ptr->b_s_info,
    762                                                    (void FAR *) ptr->mem_buffer[i],
    763                                                    file_offset, byte_count );
    764         }
    765         file_offset += byte_count;
    766     }
    767 }
    768 
    769 
    770 METHODDEF JSAMPARRAY
    771 access_virt_sarray( j_common_ptr cinfo, jvirt_sarray_ptr ptr,
    772                     JDIMENSION start_row, JDIMENSION num_rows,
    773                     boolean writable ) {
    774 /* Access the part of a virtual sample array starting at start_row */
    775 /* and extending for num_rows rows.  writable is true if  */
    776 /* caller intends to modify the accessed area. */
    777     JDIMENSION end_row = start_row + num_rows;
    778     JDIMENSION undef_row;
    779 
    780     /* debugging check */
    781     if ( ( end_row > ptr->rows_in_array ) || ( num_rows > ptr->maxaccess ) ||
    782         ( ptr->mem_buffer == NULL ) ) {
    783         ERREXIT( cinfo, JERR_BAD_VIRTUAL_ACCESS );
    784     }
    785 
    786     /* Make the desired part of the virtual array accessible */
    787     if ( ( start_row < ptr->cur_start_row ) ||
    788         ( end_row > ptr->cur_start_row + ptr->rows_in_mem ) ) {
    789         if ( !ptr->b_s_open ) {
    790             ERREXIT( cinfo, JERR_VIRTUAL_BUG );
    791         }
    792         /* Flush old buffer contents if necessary */
    793         if ( ptr->dirty ) {
    794             do_sarray_io( cinfo, ptr, TRUE );
    795             ptr->dirty = FALSE;
    796         }
    797         /* Decide what part of virtual array to access.
    798          * Algorithm: if target address > current window, assume forward scan,
    799          * load starting at target address.  If target address < current window,
    800          * assume backward scan, load so that target area is top of window.
    801          * Note that when switching from forward write to forward read, will have
    802          * start_row = 0, so the limiting case applies and we load from 0 anyway.
    803          */
    804         if ( start_row > ptr->cur_start_row ) {
    805             ptr->cur_start_row = start_row;
    806         } else {
    807             /* use long arithmetic here to avoid overflow & unsigned problems */
    808             long ltemp;
    809 
    810             ltemp = (long) end_row - (long) ptr->rows_in_mem;
    811             if ( ltemp < 0 ) {
    812                 ltemp = 0;
    813             }       /* don't fall off front end of file */
    814             ptr->cur_start_row = (JDIMENSION) ltemp;
    815         }
    816         /* Read in the selected part of the array.
    817          * During the initial write pass, we will do no actual read
    818          * because the selected part is all undefined.
    819          */
    820         do_sarray_io( cinfo, ptr, FALSE );
    821     }
    822     /* Ensure the accessed part of the array is defined; prezero if needed.
    823      * To improve locality of access, we only prezero the part of the array
    824      * that the caller is about to access, not the entire in-memory array.
    825      */
    826     if ( ptr->first_undef_row < end_row ) {
    827         if ( ptr->first_undef_row < start_row ) {
    828             if ( writable ) {/* writer skipped over a section of array */
    829                 ERREXIT( cinfo, JERR_BAD_VIRTUAL_ACCESS );
    830             }
    831             undef_row = start_row;/* but reader is allowed to read ahead */
    832         } else {
    833             undef_row = ptr->first_undef_row;
    834         }
    835         if ( writable ) {
    836             ptr->first_undef_row = end_row;
    837         }
    838         if ( ptr->pre_zero ) {
    839             size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF( JSAMPLE );
    840             undef_row -= ptr->cur_start_row;/* make indexes relative to buffer */
    841             end_row -= ptr->cur_start_row;
    842             while ( undef_row < end_row ) {
    843                 jzero_far( (void FAR *) ptr->mem_buffer[undef_row], bytesperrow );
    844                 undef_row++;
    845             }
    846         } else {
    847             if ( !writable ) {/* reader looking at undefined data */
    848                 ERREXIT( cinfo, JERR_BAD_VIRTUAL_ACCESS );
    849             }
    850         }
    851     }
    852     /* Flag the buffer dirty if caller will write in it */
    853     if ( writable ) {
    854         ptr->dirty = TRUE;
    855     }
    856     /* Return address of proper part of the buffer */
    857     return ptr->mem_buffer + ( start_row - ptr->cur_start_row );
    858 }
    859 
    860 
    861 METHODDEF JBLOCKARRAY
    862 access_virt_barray( j_common_ptr cinfo, jvirt_barray_ptr ptr,
    863                     JDIMENSION start_row, JDIMENSION num_rows,
    864                     boolean writable ) {
    865 /* Access the part of a virtual block array starting at start_row */
    866 /* and extending for num_rows rows.  writable is true if  */
    867 /* caller intends to modify the accessed area. */
    868     JDIMENSION end_row = start_row + num_rows;
    869     JDIMENSION undef_row;
    870 
    871     /* debugging check */
    872     if ( ( end_row > ptr->rows_in_array ) || ( num_rows > ptr->maxaccess ) ||
    873         ( ptr->mem_buffer == NULL ) ) {
    874         ERREXIT( cinfo, JERR_BAD_VIRTUAL_ACCESS );
    875     }
    876 
    877     /* Make the desired part of the virtual array accessible */
    878     if ( ( start_row < ptr->cur_start_row ) ||
    879         ( end_row > ptr->cur_start_row + ptr->rows_in_mem ) ) {
    880         if ( !ptr->b_s_open ) {
    881             ERREXIT( cinfo, JERR_VIRTUAL_BUG );
    882         }
    883         /* Flush old buffer contents if necessary */
    884         if ( ptr->dirty ) {
    885             do_barray_io( cinfo, ptr, TRUE );
    886             ptr->dirty = FALSE;
    887         }
    888         /* Decide what part of virtual array to access.
    889          * Algorithm: if target address > current window, assume forward scan,
    890          * load starting at target address.  If target address < current window,
    891          * assume backward scan, load so that target area is top of window.
    892          * Note that when switching from forward write to forward read, will have
    893          * start_row = 0, so the limiting case applies and we load from 0 anyway.
    894          */
    895         if ( start_row > ptr->cur_start_row ) {
    896             ptr->cur_start_row = start_row;
    897         } else {
    898             /* use long arithmetic here to avoid overflow & unsigned problems */
    899             long ltemp;
    900 
    901             ltemp = (long) end_row - (long) ptr->rows_in_mem;
    902             if ( ltemp < 0 ) {
    903                 ltemp = 0;
    904             }       /* don't fall off front end of file */
    905             ptr->cur_start_row = (JDIMENSION) ltemp;
    906         }
    907         /* Read in the selected part of the array.
    908          * During the initial write pass, we will do no actual read
    909          * because the selected part is all undefined.
    910          */
    911         do_barray_io( cinfo, ptr, FALSE );
    912     }
    913     /* Ensure the accessed part of the array is defined; prezero if needed.
    914      * To improve locality of access, we only prezero the part of the array
    915      * that the caller is about to access, not the entire in-memory array.
    916      */
    917     if ( ptr->first_undef_row < end_row ) {
    918         if ( ptr->first_undef_row < start_row ) {
    919             if ( writable ) {/* writer skipped over a section of array */
    920                 ERREXIT( cinfo, JERR_BAD_VIRTUAL_ACCESS );
    921             }
    922             undef_row = start_row;/* but reader is allowed to read ahead */
    923         } else {
    924             undef_row = ptr->first_undef_row;
    925         }
    926         if ( writable ) {
    927             ptr->first_undef_row = end_row;
    928         }
    929         if ( ptr->pre_zero ) {
    930             size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF( JBLOCK );
    931             undef_row -= ptr->cur_start_row;/* make indexes relative to buffer */
    932             end_row -= ptr->cur_start_row;
    933             while ( undef_row < end_row ) {
    934                 jzero_far( (void FAR *) ptr->mem_buffer[undef_row], bytesperrow );
    935                 undef_row++;
    936             }
    937         } else {
    938             if ( !writable ) {/* reader looking at undefined data */
    939                 ERREXIT( cinfo, JERR_BAD_VIRTUAL_ACCESS );
    940             }
    941         }
    942     }
    943     /* Flag the buffer dirty if caller will write in it */
    944     if ( writable ) {
    945         ptr->dirty = TRUE;
    946     }
    947     /* Return address of proper part of the buffer */
    948     return ptr->mem_buffer + ( start_row - ptr->cur_start_row );
    949 }
    950 
    951 
    952 /*
    953  * Release all objects belonging to a specified pool.
    954  */
    955 
    956 METHODDEF void
    957 free_pool( j_common_ptr cinfo, int pool_id ) {
    958     my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    959     small_pool_ptr shdr_ptr;
    960     large_pool_ptr lhdr_ptr;
    961     size_t space_freed;
    962 
    963     if ( ( pool_id < 0 ) || ( pool_id >= JPOOL_NUMPOOLS ) ) {
    964         ERREXIT1( cinfo, JERR_BAD_POOL_ID, pool_id );
    965     }                                           /* safety check */
    966 
    967 #ifdef MEM_STATS
    968     if ( cinfo->err->trace_level > 1 ) {
    969         print_mem_stats( cinfo, pool_id );
    970     }                                /* print pool's memory usage statistics */
    971 #endif
    972 
    973     /* If freeing IMAGE pool, close any virtual arrays first */
    974     if ( pool_id == JPOOL_IMAGE ) {
    975         jvirt_sarray_ptr sptr;
    976         jvirt_barray_ptr bptr;
    977 
    978         for ( sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next ) {
    979             if ( sptr->b_s_open ) {/* there may be no backing store */
    980                 sptr->b_s_open = FALSE;/* prevent recursive close if error */
    981                 ( *sptr->b_s_info.close_backing_store )( cinfo, &sptr->b_s_info );
    982             }
    983         }
    984         mem->virt_sarray_list = NULL;
    985         for ( bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next ) {
    986             if ( bptr->b_s_open ) {/* there may be no backing store */
    987                 bptr->b_s_open = FALSE;/* prevent recursive close if error */
    988                 ( *bptr->b_s_info.close_backing_store )( cinfo, &bptr->b_s_info );
    989             }
    990         }
    991         mem->virt_barray_list = NULL;
    992     }
    993 
    994     /* Release large objects */
    995     lhdr_ptr = mem->large_list[pool_id];
    996     mem->large_list[pool_id] = NULL;
    997 
    998     while ( lhdr_ptr != NULL ) {
    999         large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
   1000         space_freed = lhdr_ptr->hdr.bytes_used +
   1001                       lhdr_ptr->hdr.bytes_left +
   1002                       SIZEOF( large_pool_hdr );
   1003         jpeg_free_large( cinfo, (void FAR *) lhdr_ptr, space_freed );
   1004         mem->total_space_allocated -= space_freed;
   1005         lhdr_ptr = next_lhdr_ptr;
   1006     }
   1007 
   1008     /* Release small objects */
   1009     shdr_ptr = mem->small_list[pool_id];
   1010     mem->small_list[pool_id] = NULL;
   1011 
   1012     while ( shdr_ptr != NULL ) {
   1013         small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
   1014         space_freed = shdr_ptr->hdr.bytes_used +
   1015                       shdr_ptr->hdr.bytes_left +
   1016                       SIZEOF( small_pool_hdr );
   1017         jpeg_free_small( cinfo, (void *) shdr_ptr, space_freed );
   1018         mem->total_space_allocated -= space_freed;
   1019         shdr_ptr = next_shdr_ptr;
   1020     }
   1021 }
   1022 
   1023 
   1024 /*
   1025  * Close up shop entirely.
   1026  * Note that this cannot be called unless cinfo->mem is non-NULL.
   1027  */
   1028 
   1029 METHODDEF void
   1030 self_destruct( j_common_ptr cinfo ) {
   1031     int pool;
   1032 
   1033     /* Close all backing store, release all memory.
   1034      * Releasing pools in reverse order might help avoid fragmentation
   1035      * with some (brain-damaged) malloc libraries.
   1036      */
   1037     for ( pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool-- ) {
   1038         free_pool( cinfo, pool );
   1039     }
   1040 
   1041     /* Release the memory manager control block too. */
   1042     jpeg_free_small( cinfo, (void *) cinfo->mem, SIZEOF( my_memory_mgr ) );
   1043     cinfo->mem = NULL;      /* ensures I will be called only once */
   1044 
   1045     jpeg_mem_term( cinfo ); /* system-dependent cleanup */
   1046 }
   1047 
   1048 
   1049 /*
   1050  * Memory manager initialization.
   1051  * When this is called, only the error manager pointer is valid in cinfo!
   1052  */
   1053 
   1054 GLOBAL void
   1055 jinit_memory_mgr( j_common_ptr cinfo ) {
   1056     my_mem_ptr mem;
   1057     long max_to_use;
   1058     int pool;
   1059     size_t test_mac;
   1060 
   1061     cinfo->mem = NULL;      /* for safety if init fails */
   1062 
   1063     /* Check for configuration errors.
   1064      * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
   1065      * doesn't reflect any real hardware alignment requirement.
   1066      * The test is a little tricky: for X>0, X and X-1 have no one-bits
   1067      * in common if and only if X is a power of 2, ie has only one one-bit.
   1068      * Some compilers may give an "unreachable code" warning here; ignore it.
   1069      */
   1070     if ( ( SIZEOF( ALIGN_TYPE ) & ( SIZEOF( ALIGN_TYPE ) - 1 ) ) != 0 ) {
   1071         ERREXIT( cinfo, JERR_BAD_ALIGN_TYPE );
   1072     }
   1073     /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
   1074      * a multiple of SIZEOF(ALIGN_TYPE).
   1075      * Again, an "unreachable code" warning may be ignored here.
   1076      * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
   1077      */
   1078     test_mac = (size_t) MAX_ALLOC_CHUNK;
   1079     if ( ( (long) test_mac != MAX_ALLOC_CHUNK ) ||
   1080         ( ( MAX_ALLOC_CHUNK % SIZEOF( ALIGN_TYPE ) ) != 0 ) ) {
   1081         ERREXIT( cinfo, JERR_BAD_ALLOC_CHUNK );
   1082     }
   1083 
   1084     max_to_use = jpeg_mem_init( cinfo );/* system-dependent initialization */
   1085 
   1086     /* Attempt to allocate memory manager's control block */
   1087     mem = (my_mem_ptr) jpeg_get_small( cinfo, SIZEOF( my_memory_mgr ) );
   1088 
   1089     if ( mem == NULL ) {
   1090         jpeg_mem_term( cinfo );/* system-dependent cleanup */
   1091         ERREXIT1( cinfo, JERR_OUT_OF_MEMORY, 0 );
   1092     }
   1093 
   1094     /* OK, fill in the method pointers */
   1095     mem->pub.alloc_small = alloc_small;
   1096     mem->pub.alloc_large = alloc_large;
   1097     mem->pub.alloc_sarray = alloc_sarray;
   1098     mem->pub.alloc_barray = alloc_barray;
   1099     mem->pub.request_virt_sarray = request_virt_sarray;
   1100     mem->pub.request_virt_barray = request_virt_barray;
   1101     mem->pub.realize_virt_arrays = realize_virt_arrays;
   1102     mem->pub.access_virt_sarray = access_virt_sarray;
   1103     mem->pub.access_virt_barray = access_virt_barray;
   1104     mem->pub.free_pool = free_pool;
   1105     mem->pub.self_destruct = self_destruct;
   1106 
   1107     /* Initialize working state */
   1108     mem->pub.max_memory_to_use = max_to_use;
   1109 
   1110     for ( pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool-- ) {
   1111         mem->small_list[pool] = NULL;
   1112         mem->large_list[pool] = NULL;
   1113     }
   1114     mem->virt_sarray_list = NULL;
   1115     mem->virt_barray_list = NULL;
   1116 
   1117     mem->total_space_allocated = SIZEOF( my_memory_mgr );
   1118 
   1119     /* Declare ourselves open for business */
   1120     cinfo->mem = &mem->pub;
   1121 
   1122     /* Check for an environment variable JPEGMEM; if found, override the
   1123      * default max_memory setting from jpeg_mem_init.  Note that the
   1124      * surrounding application may again override this value.
   1125      * If your system doesn't support getenv(), define NO_GETENV to disable
   1126      * this feature.
   1127      */
   1128 #ifndef NO_GETENV
   1129     { char * memenv;
   1130 
   1131       if ( ( memenv = getenv( "JPEGMEM" ) ) != NULL ) {
   1132           char ch = 'x';
   1133 
   1134           if ( sscanf( memenv, "%ld%c", &max_to_use, &ch ) > 0 ) {
   1135               if ( ( ch == 'm' ) || ( ch == 'M' ) ) {
   1136                   max_to_use *= 1000L;
   1137               }
   1138               mem->pub.max_memory_to_use = max_to_use * 1000L;
   1139           }
   1140       }
   1141     }
   1142 #endif
   1143 
   1144 }