DOOM-3-BFG

DOOM 3 BFG Edition
Log | Files | Refs

jquant2.cpp (54356B)


      1 /*
      2  * jquant2.c
      3  *
      4  * Copyright (C) 1991-1995, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains 2-pass color quantization (color mapping) routines.
      9  * These routines provide selection of a custom color map for an image,
     10  * followed by mapping of the image to that color map, with optional
     11  * Floyd-Steinberg dithering.
     12  * It is also possible to use just the second pass to map to an arbitrary
     13  * externally-given color map.
     14  *
     15  * Note: ordered dithering is not supported, since there isn't any fast
     16  * way to compute intercolor distances; it's unclear that ordered dither's
     17  * fundamental assumptions even hold with an irregularly spaced color map.
     18  */
     19 
     20 #define JPEG_INTERNALS
     21 #include "jinclude.h"
     22 #include "jpeglib.h"
     23 
     24 #ifdef QUANT_2PASS_SUPPORTED
     25 
     26 
     27 /*
     28  * This module implements the well-known Heckbert paradigm for color
     29  * quantization.  Most of the ideas used here can be traced back to
     30  * Heckbert's seminal paper
     31  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
     32  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
     33  *
     34  * In the first pass over the image, we accumulate a histogram showing the
     35  * usage count of each possible color.  To keep the histogram to a reasonable
     36  * size, we reduce the precision of the input; typical practice is to retain
     37  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
     38  * in the same histogram cell.
     39  *
     40  * Next, the color-selection step begins with a box representing the whole
     41  * color space, and repeatedly splits the "largest" remaining box until we
     42  * have as many boxes as desired colors.  Then the mean color in each
     43  * remaining box becomes one of the possible output colors.
     44  *
     45  * The second pass over the image maps each input pixel to the closest output
     46  * color (optionally after applying a Floyd-Steinberg dithering correction).
     47  * This mapping is logically trivial, but making it go fast enough requires
     48  * considerable care.
     49  *
     50  * Heckbert-style quantizers vary a good deal in their policies for choosing
     51  * the "largest" box and deciding where to cut it.  The particular policies
     52  * used here have proved out well in experimental comparisons, but better ones
     53  * may yet be found.
     54  *
     55  * In earlier versions of the IJG code, this module quantized in YCbCr color
     56  * space, processing the raw upsampled data without a color conversion step.
     57  * This allowed the color conversion math to be done only once per colormap
     58  * entry, not once per pixel.  However, that optimization precluded other
     59  * useful optimizations (such as merging color conversion with upsampling)
     60  * and it also interfered with desired capabilities such as quantizing to an
     61  * externally-supplied colormap.  We have therefore abandoned that approach.
     62  * The present code works in the post-conversion color space, typically RGB.
     63  *
     64  * To improve the visual quality of the results, we actually work in scaled
     65  * RGB space, giving G distances more weight than R, and R in turn more than
     66  * B.  To do everything in integer math, we must use integer scale factors.
     67  * The 2/3/1 scale factors used here correspond loosely to the relative
     68  * weights of the colors in the NTSC grayscale equation.
     69  * If you want to use this code to quantize a non-RGB color space, you'll
     70  * probably need to change these scale factors.
     71  */
     72 
     73 #define R_SCALE 2       /* scale R distances by this much */
     74 #define G_SCALE 3       /* scale G distances by this much */
     75 #define B_SCALE 1       /* and B by this much */
     76 
     77 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
     78  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
     79  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
     80  * you'll get compile errors until you extend this logic.  In that case
     81  * you'll probably want to tweak the histogram sizes too.
     82  */
     83 
     84 #if RGB_RED == 0
     85 #define C0_SCALE R_SCALE
     86 #endif
     87 #if RGB_BLUE == 0
     88 #define C0_SCALE B_SCALE
     89 #endif
     90 #if RGB_GREEN == 1
     91 #define C1_SCALE G_SCALE
     92 #endif
     93 #if RGB_RED == 2
     94 #define C2_SCALE R_SCALE
     95 #endif
     96 #if RGB_BLUE == 2
     97 #define C2_SCALE B_SCALE
     98 #endif
     99 
    100 
    101 /*
    102  * First we have the histogram data structure and routines for creating it.
    103  *
    104  * The number of bits of precision can be adjusted by changing these symbols.
    105  * We recommend keeping 6 bits for G and 5 each for R and B.
    106  * If you have plenty of memory and cycles, 6 bits all around gives marginally
    107  * better results; if you are short of memory, 5 bits all around will save
    108  * some space but degrade the results.
    109  * To maintain a fully accurate histogram, we'd need to allocate a "long"
    110  * (preferably unsigned long) for each cell.  In practice this is overkill;
    111  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
    112  * and clamping those that do overflow to the maximum value will give close-
    113  * enough results.  This reduces the recommended histogram size from 256Kb
    114  * to 128Kb, which is a useful savings on PC-class machines.
    115  * (In the second pass the histogram space is re-used for pixel mapping data;
    116  * in that capacity, each cell must be able to store zero to the number of
    117  * desired colors.  16 bits/cell is plenty for that too.)
    118  * Since the JPEG code is intended to run in small memory model on 80x86
    119  * machines, we can't just allocate the histogram in one chunk.  Instead
    120  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
    121  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
    122  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
    123  * on 80x86 machines, the pointer row is in near memory but the actual
    124  * arrays are in far memory (same arrangement as we use for image arrays).
    125  */
    126 
    127 #define MAXNUMCOLORS  ( MAXJSAMPLE + 1 ) /* maximum size of colormap */
    128 
    129 /* These will do the right thing for either R,G,B or B,G,R color order,
    130  * but you may not like the results for other color orders.
    131  */
    132 #define HIST_C0_BITS  5     /* bits of precision in R/B histogram */
    133 #define HIST_C1_BITS  6     /* bits of precision in G histogram */
    134 #define HIST_C2_BITS  5     /* bits of precision in B/R histogram */
    135 
    136 /* Number of elements along histogram axes. */
    137 #define HIST_C0_ELEMS  ( 1 << HIST_C0_BITS )
    138 #define HIST_C1_ELEMS  ( 1 << HIST_C1_BITS )
    139 #define HIST_C2_ELEMS  ( 1 << HIST_C2_BITS )
    140 
    141 /* These are the amounts to shift an input value to get a histogram index. */
    142 #define C0_SHIFT  ( BITS_IN_JSAMPLE - HIST_C0_BITS )
    143 #define C1_SHIFT  ( BITS_IN_JSAMPLE - HIST_C1_BITS )
    144 #define C2_SHIFT  ( BITS_IN_JSAMPLE - HIST_C2_BITS )
    145 
    146 
    147 typedef UINT16 histcell;    /* histogram cell; prefer an unsigned type */
    148 
    149 typedef histcell FAR * histptr; /* for pointers to histogram cells */
    150 
    151 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
    152 typedef hist1d FAR * hist2d;    /* type for the 2nd-level pointers */
    153 typedef hist2d * hist3d;    /* type for top-level pointer */
    154 
    155 
    156 /* Declarations for Floyd-Steinberg dithering.
    157  *
    158  * Errors are accumulated into the array fserrors[], at a resolution of
    159  * 1/16th of a pixel count.  The error at a given pixel is propagated
    160  * to its not-yet-processed neighbors using the standard F-S fractions,
    161  *		...	(here)	7/16
    162  *		3/16	5/16	1/16
    163  * We work left-to-right on even rows, right-to-left on odd rows.
    164  *
    165  * We can get away with a single array (holding one row's worth of errors)
    166  * by using it to store the current row's errors at pixel columns not yet
    167  * processed, but the next row's errors at columns already processed.  We
    168  * need only a few extra variables to hold the errors immediately around the
    169  * current column.  (If we are lucky, those variables are in registers, but
    170  * even if not, they're probably cheaper to access than array elements are.)
    171  *
    172  * The fserrors[] array has (#columns + 2) entries; the extra entry at
    173  * each end saves us from special-casing the first and last pixels.
    174  * Each entry is three values long, one value for each color component.
    175  *
    176  * Note: on a wide image, we might not have enough room in a PC's near data
    177  * segment to hold the error array; so it is allocated with alloc_large.
    178  */
    179 
    180 #if BITS_IN_JSAMPLE == 8
    181 typedef INT16 FSERROR;      /* 16 bits should be enough */
    182 typedef int LOCFSERROR;     /* use 'int' for calculation temps */
    183 #else
    184 typedef INT32 FSERROR;      /* may need more than 16 bits */
    185 typedef INT32 LOCFSERROR;   /* be sure calculation temps are big enough */
    186 #endif
    187 
    188 typedef FSERROR FAR * FSERRPTR;  /* pointer to error array (in FAR storage!) */
    189 
    190 
    191 /* Private subobject */
    192 
    193 typedef struct {
    194     struct jpeg_color_quantizer pub;/* public fields */
    195 
    196     /* Space for the eventually created colormap is stashed here */
    197     JSAMPARRAY sv_colormap; /* colormap allocated at init time */
    198     int        desired; /* desired # of colors = size of colormap */
    199 
    200     /* Variables for accumulating image statistics */
    201     hist3d histogram;   /* pointer to the histogram */
    202 
    203     boolean needs_zeroed;   /* TRUE if next pass must zero histogram */
    204 
    205     /* Variables for Floyd-Steinberg dithering */
    206     FSERRPTR fserrors;      /* accumulated errors */
    207     boolean  on_odd_row;    /* flag to remember which row we are on */
    208     int *    error_limiter; /* table for clamping the applied error */
    209 } my_cquantizer;
    210 
    211 typedef my_cquantizer * my_cquantize_ptr;
    212 
    213 
    214 /*
    215  * Prescan some rows of pixels.
    216  * In this module the prescan simply updates the histogram, which has been
    217  * initialized to zeroes by start_pass.
    218  * An output_buf parameter is required by the method signature, but no data
    219  * is actually output (in fact the buffer controller is probably passing a
    220  * NULL pointer).
    221  */
    222 
    223 METHODDEF void
    224 prescan_quantize( j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    225                   JSAMPARRAY output_buf, int num_rows ) {
    226     my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    227     register JSAMPROW ptr;
    228     register histptr histp;
    229     register hist3d histogram = cquantize->histogram;
    230     int row;
    231     JDIMENSION col;
    232     JDIMENSION width = cinfo->output_width;
    233 
    234     for ( row = 0; row < num_rows; row++ ) {
    235         ptr = input_buf[row];
    236         for ( col = width; col > 0; col-- ) {
    237             /* get pixel value and index into the histogram */
    238             histp = &histogram[GETJSAMPLE( ptr[0] ) >> C0_SHIFT]
    239                     [GETJSAMPLE( ptr[1] ) >> C1_SHIFT]
    240                     [GETJSAMPLE( ptr[2] ) >> C2_SHIFT];
    241             /* increment, check for overflow and undo increment if so. */
    242             if ( ++ ( *histp ) <= 0 ) {
    243                 ( *histp )--;
    244             }
    245             ptr += 3;
    246         }
    247     }
    248 }
    249 
    250 
    251 /*
    252  * Next we have the really interesting routines: selection of a colormap
    253  * given the completed histogram.
    254  * These routines work with a list of "boxes", each representing a rectangular
    255  * subset of the input color space (to histogram precision).
    256  */
    257 
    258 typedef struct {
    259     /* The bounds of the box (inclusive); expressed as histogram indexes */
    260     int c0min, c0max;
    261     int c1min, c1max;
    262     int c2min, c2max;
    263     /* The volume (actually 2-norm) of the box */
    264     INT32 volume;
    265     /* The number of nonzero histogram cells within this box */
    266     long colorcount;
    267 } box;
    268 
    269 typedef box * boxptr;
    270 
    271 
    272 LOCAL boxptr
    273 find_biggest_color_pop( boxptr boxlist, int numboxes ) {
    274 /* Find the splittable box with the largest color population */
    275 /* Returns NULL if no splittable boxes remain */
    276     register boxptr boxp;
    277     register int i;
    278     register long maxc = 0;
    279     boxptr which = NULL;
    280 
    281     for ( i = 0, boxp = boxlist; i < numboxes; i++, boxp++ ) {
    282         if ( ( boxp->colorcount > maxc ) && ( boxp->volume > 0 ) ) {
    283             which = boxp;
    284             maxc = boxp->colorcount;
    285         }
    286     }
    287     return which;
    288 }
    289 
    290 
    291 LOCAL boxptr
    292 find_biggest_volume( boxptr boxlist, int numboxes ) {
    293 /* Find the splittable box with the largest (scaled) volume */
    294 /* Returns NULL if no splittable boxes remain */
    295     register boxptr boxp;
    296     register int i;
    297     register INT32 maxv = 0;
    298     boxptr which = NULL;
    299 
    300     for ( i = 0, boxp = boxlist; i < numboxes; i++, boxp++ ) {
    301         if ( boxp->volume > maxv ) {
    302             which = boxp;
    303             maxv = boxp->volume;
    304         }
    305     }
    306     return which;
    307 }
    308 
    309 
    310 LOCAL void
    311 update_box( j_decompress_ptr cinfo, boxptr boxp ) {
    312 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
    313 /* and recompute its volume and population */
    314     my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    315     hist3d histogram = cquantize->histogram;
    316     histptr histp;
    317     int c0, c1, c2;
    318     int c0min, c0max, c1min, c1max, c2min, c2max;
    319     INT32 dist0, dist1, dist2;
    320     long ccount;
    321 
    322     c0min = boxp->c0min;
    323     c0max = boxp->c0max;
    324     c1min = boxp->c1min;
    325     c1max = boxp->c1max;
    326     c2min = boxp->c2min;
    327     c2max = boxp->c2max;
    328 
    329     if ( c0max > c0min ) {
    330         for ( c0 = c0min; c0 <= c0max; c0++ ) {
    331             for ( c1 = c1min; c1 <= c1max; c1++ ) {
    332                 histp = &histogram[c0][c1][c2min];
    333                 for ( c2 = c2min; c2 <= c2max; c2++ ) {
    334                     if ( *histp++ != 0 ) {
    335                         boxp->c0min = c0min = c0;
    336                         goto have_c0min;
    337                     }
    338                 }
    339             }
    340         }
    341     }
    342 have_c0min:
    343     if ( c0max > c0min ) {
    344         for ( c0 = c0max; c0 >= c0min; c0-- ) {
    345             for ( c1 = c1min; c1 <= c1max; c1++ ) {
    346                 histp = &histogram[c0][c1][c2min];
    347                 for ( c2 = c2min; c2 <= c2max; c2++ ) {
    348                     if ( *histp++ != 0 ) {
    349                         boxp->c0max = c0max = c0;
    350                         goto have_c0max;
    351                     }
    352                 }
    353             }
    354         }
    355     }
    356 have_c0max:
    357     if ( c1max > c1min ) {
    358         for ( c1 = c1min; c1 <= c1max; c1++ ) {
    359             for ( c0 = c0min; c0 <= c0max; c0++ ) {
    360                 histp = &histogram[c0][c1][c2min];
    361                 for ( c2 = c2min; c2 <= c2max; c2++ ) {
    362                     if ( *histp++ != 0 ) {
    363                         boxp->c1min = c1min = c1;
    364                         goto have_c1min;
    365                     }
    366                 }
    367             }
    368         }
    369     }
    370 have_c1min:
    371     if ( c1max > c1min ) {
    372         for ( c1 = c1max; c1 >= c1min; c1-- ) {
    373             for ( c0 = c0min; c0 <= c0max; c0++ ) {
    374                 histp = &histogram[c0][c1][c2min];
    375                 for ( c2 = c2min; c2 <= c2max; c2++ ) {
    376                     if ( *histp++ != 0 ) {
    377                         boxp->c1max = c1max = c1;
    378                         goto have_c1max;
    379                     }
    380                 }
    381             }
    382         }
    383     }
    384 have_c1max:
    385     if ( c2max > c2min ) {
    386         for ( c2 = c2min; c2 <= c2max; c2++ ) {
    387             for ( c0 = c0min; c0 <= c0max; c0++ ) {
    388                 histp = &histogram[c0][c1min][c2];
    389                 for ( c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS ) {
    390                     if ( *histp != 0 ) {
    391                         boxp->c2min = c2min = c2;
    392                         goto have_c2min;
    393                     }
    394                 }
    395             }
    396         }
    397     }
    398 have_c2min:
    399     if ( c2max > c2min ) {
    400         for ( c2 = c2max; c2 >= c2min; c2-- ) {
    401             for ( c0 = c0min; c0 <= c0max; c0++ ) {
    402                 histp = &histogram[c0][c1min][c2];
    403                 for ( c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS ) {
    404                     if ( *histp != 0 ) {
    405                         boxp->c2max = c2max = c2;
    406                         goto have_c2max;
    407                     }
    408                 }
    409             }
    410         }
    411     }
    412 have_c2max:
    413 
    414     /* Update box volume.
    415      * We use 2-norm rather than real volume here; this biases the method
    416      * against making long narrow boxes, and it has the side benefit that
    417      * a box is splittable iff norm > 0.
    418      * Since the differences are expressed in histogram-cell units,
    419      * we have to shift back to JSAMPLE units to get consistent distances;
    420      * after which, we scale according to the selected distance scale factors.
    421      */
    422     dist0 = ( ( c0max - c0min ) << C0_SHIFT ) * C0_SCALE;
    423     dist1 = ( ( c1max - c1min ) << C1_SHIFT ) * C1_SCALE;
    424     dist2 = ( ( c2max - c2min ) << C2_SHIFT ) * C2_SCALE;
    425     boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
    426 
    427     /* Now scan remaining volume of box and compute population */
    428     ccount = 0;
    429     for ( c0 = c0min; c0 <= c0max; c0++ ) {
    430         for ( c1 = c1min; c1 <= c1max; c1++ ) {
    431             histp = &histogram[c0][c1][c2min];
    432             for ( c2 = c2min; c2 <= c2max; c2++, histp++ ) {
    433                 if ( *histp != 0 ) {
    434                     ccount++;
    435                 }
    436             }
    437         }
    438     }
    439     boxp->colorcount = ccount;
    440 }
    441 
    442 
    443 LOCAL int
    444 median_cut( j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
    445             int desired_colors ) {
    446 /* Repeatedly select and split the largest box until we have enough boxes */
    447     int n, lb;
    448     int c0, c1, c2, cmax;
    449     register boxptr b1, b2;
    450 
    451     while ( numboxes < desired_colors ) {
    452         /* Select box to split.
    453          * Current algorithm: by population for first half, then by volume.
    454          */
    455         if ( numboxes * 2 <= desired_colors ) {
    456             b1 = find_biggest_color_pop( boxlist, numboxes );
    457         } else {
    458             b1 = find_biggest_volume( boxlist, numboxes );
    459         }
    460         if ( b1 == NULL ) {/* no splittable boxes left! */
    461             break;
    462         }
    463         b2 = &boxlist[numboxes];/* where new box will go */
    464         /* Copy the color bounds to the new box. */
    465         b2->c0max = b1->c0max;
    466         b2->c1max = b1->c1max;
    467         b2->c2max = b1->c2max;
    468         b2->c0min = b1->c0min;
    469         b2->c1min = b1->c1min;
    470         b2->c2min = b1->c2min;
    471         /* Choose which axis to split the box on.
    472          * Current algorithm: longest scaled axis.
    473          * See notes in update_box about scaling distances.
    474          */
    475         c0 = ( ( b1->c0max - b1->c0min ) << C0_SHIFT ) * C0_SCALE;
    476         c1 = ( ( b1->c1max - b1->c1min ) << C1_SHIFT ) * C1_SCALE;
    477         c2 = ( ( b1->c2max - b1->c2min ) << C2_SHIFT ) * C2_SCALE;
    478         /* We want to break any ties in favor of green, then red, blue last.
    479          * This code does the right thing for R,G,B or B,G,R color orders only.
    480          */
    481 #if RGB_RED == 0
    482         cmax = c1;
    483         n = 1;
    484         if ( c0 > cmax ) {
    485             cmax = c0;
    486             n = 0;
    487         }
    488         if ( c2 > cmax ) {
    489             n = 2;
    490         }
    491 #else
    492         cmax = c1;
    493         n = 1;
    494         if ( c2 > cmax ) {
    495             cmax = c2;
    496             n = 2;
    497         }
    498         if ( c0 > cmax ) {
    499             n = 0;
    500         }
    501 #endif
    502         /* Choose split point along selected axis, and update box bounds.
    503          * Current algorithm: split at halfway point.
    504          * (Since the box has been shrunk to minimum volume,
    505          * any split will produce two nonempty subboxes.)
    506          * Note that lb value is max for lower box, so must be < old max.
    507          */
    508         switch ( n ) {
    509             case 0:
    510                 lb = ( b1->c0max + b1->c0min ) / 2;
    511                 b1->c0max = lb;
    512                 b2->c0min = lb + 1;
    513                 break;
    514             case 1:
    515                 lb = ( b1->c1max + b1->c1min ) / 2;
    516                 b1->c1max = lb;
    517                 b2->c1min = lb + 1;
    518                 break;
    519             case 2:
    520                 lb = ( b1->c2max + b1->c2min ) / 2;
    521                 b1->c2max = lb;
    522                 b2->c2min = lb + 1;
    523                 break;
    524         }
    525         /* Update stats for boxes */
    526         update_box( cinfo, b1 );
    527         update_box( cinfo, b2 );
    528         numboxes++;
    529     }
    530     return numboxes;
    531 }
    532 
    533 
    534 LOCAL void
    535 compute_color( j_decompress_ptr cinfo, boxptr boxp, int icolor ) {
    536 /* Compute representative color for a box, put it in colormap[icolor] */
    537 /* Current algorithm: mean weighted by pixels (not colors) */
    538 /* Note it is important to get the rounding correct! */
    539     my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    540     hist3d histogram = cquantize->histogram;
    541     histptr histp;
    542     int c0, c1, c2;
    543     int c0min, c0max, c1min, c1max, c2min, c2max;
    544     long count;
    545     long total = 0;
    546     long c0total = 0;
    547     long c1total = 0;
    548     long c2total = 0;
    549 
    550     c0min = boxp->c0min;
    551     c0max = boxp->c0max;
    552     c1min = boxp->c1min;
    553     c1max = boxp->c1max;
    554     c2min = boxp->c2min;
    555     c2max = boxp->c2max;
    556 
    557     for ( c0 = c0min; c0 <= c0max; c0++ ) {
    558         for ( c1 = c1min; c1 <= c1max; c1++ ) {
    559             histp = &histogram[c0][c1][c2min];
    560             for ( c2 = c2min; c2 <= c2max; c2++ ) {
    561                 if ( ( count = *histp++ ) != 0 ) {
    562                     total += count;
    563                     c0total += ( ( c0 << C0_SHIFT ) + ( ( 1 << C0_SHIFT ) >> 1 ) ) * count;
    564                     c1total += ( ( c1 << C1_SHIFT ) + ( ( 1 << C1_SHIFT ) >> 1 ) ) * count;
    565                     c2total += ( ( c2 << C2_SHIFT ) + ( ( 1 << C2_SHIFT ) >> 1 ) ) * count;
    566                 }
    567             }
    568         }
    569     }
    570 
    571     cinfo->colormap[0][icolor] = (JSAMPLE) ( ( c0total + ( total >> 1 ) ) / total );
    572     cinfo->colormap[1][icolor] = (JSAMPLE) ( ( c1total + ( total >> 1 ) ) / total );
    573     cinfo->colormap[2][icolor] = (JSAMPLE) ( ( c2total + ( total >> 1 ) ) / total );
    574 }
    575 
    576 
    577 LOCAL void
    578 select_colors( j_decompress_ptr cinfo, int desired_colors ) {
    579 /* Master routine for color selection */
    580     boxptr boxlist;
    581     int numboxes;
    582     int i;
    583 
    584     /* Allocate workspace for box list */
    585     boxlist = (boxptr) ( *cinfo->mem->alloc_small )
    586               ( (j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF( box ) );
    587     /* Initialize one box containing whole space */
    588     numboxes = 1;
    589     boxlist[0].c0min = 0;
    590     boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
    591     boxlist[0].c1min = 0;
    592     boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
    593     boxlist[0].c2min = 0;
    594     boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
    595     /* Shrink it to actually-used volume and set its statistics */
    596     update_box( cinfo, &boxlist[0] );
    597     /* Perform median-cut to produce final box list */
    598     numboxes = median_cut( cinfo, boxlist, numboxes, desired_colors );
    599     /* Compute the representative color for each box, fill colormap */
    600     for ( i = 0; i < numboxes; i++ ) {
    601         compute_color( cinfo, &boxlist[i], i );
    602     }
    603     cinfo->actual_number_of_colors = numboxes;
    604     TRACEMS1( cinfo, 1, JTRC_QUANT_SELECTED, numboxes );
    605 }
    606 
    607 
    608 /*
    609  * These routines are concerned with the time-critical task of mapping input
    610  * colors to the nearest color in the selected colormap.
    611  *
    612  * We re-use the histogram space as an "inverse color map", essentially a
    613  * cache for the results of nearest-color searches.  All colors within a
    614  * histogram cell will be mapped to the same colormap entry, namely the one
    615  * closest to the cell's center.  This may not be quite the closest entry to
    616  * the actual input color, but it's almost as good.  A zero in the cache
    617  * indicates we haven't found the nearest color for that cell yet; the array
    618  * is cleared to zeroes before starting the mapping pass.  When we find the
    619  * nearest color for a cell, its colormap index plus one is recorded in the
    620  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
    621  * when they need to use an unfilled entry in the cache.
    622  *
    623  * Our method of efficiently finding nearest colors is based on the "locally
    624  * sorted search" idea described by Heckbert and on the incremental distance
    625  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
    626  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
    627  * the distances from a given colormap entry to each cell of the histogram can
    628  * be computed quickly using an incremental method: the differences between
    629  * distances to adjacent cells themselves differ by a constant.  This allows a
    630  * fairly fast implementation of the "brute force" approach of computing the
    631  * distance from every colormap entry to every histogram cell.  Unfortunately,
    632  * it needs a work array to hold the best-distance-so-far for each histogram
    633  * cell (because the inner loop has to be over cells, not colormap entries).
    634  * The work array elements have to be INT32s, so the work array would need
    635  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
    636  *
    637  * To get around these problems, we apply Thomas' method to compute the
    638  * nearest colors for only the cells within a small subbox of the histogram.
    639  * The work array need be only as big as the subbox, so the memory usage
    640  * problem is solved.  Furthermore, we need not fill subboxes that are never
    641  * referenced in pass2; many images use only part of the color gamut, so a
    642  * fair amount of work is saved.  An additional advantage of this
    643  * approach is that we can apply Heckbert's locality criterion to quickly
    644  * eliminate colormap entries that are far away from the subbox; typically
    645  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
    646  * and we need not compute their distances to individual cells in the subbox.
    647  * The speed of this approach is heavily influenced by the subbox size: too
    648  * small means too much overhead, too big loses because Heckbert's criterion
    649  * can't eliminate as many colormap entries.  Empirically the best subbox
    650  * size seems to be about 1/512th of the histogram (1/8th in each direction).
    651  *
    652  * Thomas' article also describes a refined method which is asymptotically
    653  * faster than the brute-force method, but it is also far more complex and
    654  * cannot efficiently be applied to small subboxes.  It is therefore not
    655  * useful for programs intended to be portable to DOS machines.  On machines
    656  * with plenty of memory, filling the whole histogram in one shot with Thomas'
    657  * refined method might be faster than the present code --- but then again,
    658  * it might not be any faster, and it's certainly more complicated.
    659  */
    660 
    661 
    662 /* log2(histogram cells in update box) for each axis; this can be adjusted */
    663 #define BOX_C0_LOG  ( HIST_C0_BITS - 3 )
    664 #define BOX_C1_LOG  ( HIST_C1_BITS - 3 )
    665 #define BOX_C2_LOG  ( HIST_C2_BITS - 3 )
    666 
    667 #define BOX_C0_ELEMS  ( 1 << BOX_C0_LOG ) /* # of hist cells in update box */
    668 #define BOX_C1_ELEMS  ( 1 << BOX_C1_LOG )
    669 #define BOX_C2_ELEMS  ( 1 << BOX_C2_LOG )
    670 
    671 #define BOX_C0_SHIFT  ( C0_SHIFT + BOX_C0_LOG )
    672 #define BOX_C1_SHIFT  ( C1_SHIFT + BOX_C1_LOG )
    673 #define BOX_C2_SHIFT  ( C2_SHIFT + BOX_C2_LOG )
    674 
    675 
    676 /*
    677  * The next three routines implement inverse colormap filling.  They could
    678  * all be folded into one big routine, but splitting them up this way saves
    679  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
    680  * and may allow some compilers to produce better code by registerizing more
    681  * inner-loop variables.
    682  */
    683 
    684 LOCAL int
    685 find_nearby_colors( j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
    686                     JSAMPLE colorlist[] ) {
    687 /* Locate the colormap entries close enough to an update box to be candidates
    688  * for the nearest entry to some cell(s) in the update box.  The update box
    689  * is specified by the center coordinates of its first cell.  The number of
    690  * candidate colormap entries is returned, and their colormap indexes are
    691  * placed in colorlist[].
    692  * This routine uses Heckbert's "locally sorted search" criterion to select
    693  * the colors that need further consideration.
    694  */
    695     int numcolors = cinfo->actual_number_of_colors;
    696     int maxc0, maxc1, maxc2;
    697     int centerc0, centerc1, centerc2;
    698     int i, x, ncolors;
    699     INT32 minmaxdist, min_dist, max_dist, tdist;
    700     INT32 mindist[MAXNUMCOLORS];/* min distance to colormap entry i */
    701 
    702     /* Compute true coordinates of update box's upper corner and center.
    703      * Actually we compute the coordinates of the center of the upper-corner
    704      * histogram cell, which are the upper bounds of the volume we care about.
    705      * Note that since ">>" rounds down, the "center" values may be closer to
    706      * min than to max; hence comparisons to them must be "<=", not "<".
    707      */
    708     maxc0 = minc0 + ( ( 1 << BOX_C0_SHIFT ) - ( 1 << C0_SHIFT ) );
    709     centerc0 = ( minc0 + maxc0 ) >> 1;
    710     maxc1 = minc1 + ( ( 1 << BOX_C1_SHIFT ) - ( 1 << C1_SHIFT ) );
    711     centerc1 = ( minc1 + maxc1 ) >> 1;
    712     maxc2 = minc2 + ( ( 1 << BOX_C2_SHIFT ) - ( 1 << C2_SHIFT ) );
    713     centerc2 = ( minc2 + maxc2 ) >> 1;
    714 
    715     /* For each color in colormap, find:
    716      *  1. its minimum squared-distance to any point in the update box
    717      *     (zero if color is within update box);
    718      *  2. its maximum squared-distance to any point in the update box.
    719      * Both of these can be found by considering only the corners of the box.
    720      * We save the minimum distance for each color in mindist[];
    721      * only the smallest maximum distance is of interest.
    722      */
    723     minmaxdist = 0x7FFFFFFFL;
    724 
    725     for ( i = 0; i < numcolors; i++ ) {
    726         /* We compute the squared-c0-distance term, then add in the other two. */
    727         x = GETJSAMPLE( cinfo->colormap[0][i] );
    728         if ( x < minc0 ) {
    729             tdist = ( x - minc0 ) * C0_SCALE;
    730             min_dist = tdist * tdist;
    731             tdist = ( x - maxc0 ) * C0_SCALE;
    732             max_dist = tdist * tdist;
    733         } else if ( x > maxc0 ) {
    734             tdist = ( x - maxc0 ) * C0_SCALE;
    735             min_dist = tdist * tdist;
    736             tdist = ( x - minc0 ) * C0_SCALE;
    737             max_dist = tdist * tdist;
    738         } else {
    739             /* within cell range so no contribution to min_dist */
    740             min_dist = 0;
    741             if ( x <= centerc0 ) {
    742                 tdist = ( x - maxc0 ) * C0_SCALE;
    743                 max_dist = tdist * tdist;
    744             } else {
    745                 tdist = ( x - minc0 ) * C0_SCALE;
    746                 max_dist = tdist * tdist;
    747             }
    748         }
    749 
    750         x = GETJSAMPLE( cinfo->colormap[1][i] );
    751         if ( x < minc1 ) {
    752             tdist = ( x - minc1 ) * C1_SCALE;
    753             min_dist += tdist * tdist;
    754             tdist = ( x - maxc1 ) * C1_SCALE;
    755             max_dist += tdist * tdist;
    756         } else if ( x > maxc1 ) {
    757             tdist = ( x - maxc1 ) * C1_SCALE;
    758             min_dist += tdist * tdist;
    759             tdist = ( x - minc1 ) * C1_SCALE;
    760             max_dist += tdist * tdist;
    761         } else {
    762             /* within cell range so no contribution to min_dist */
    763             if ( x <= centerc1 ) {
    764                 tdist = ( x - maxc1 ) * C1_SCALE;
    765                 max_dist += tdist * tdist;
    766             } else {
    767                 tdist = ( x - minc1 ) * C1_SCALE;
    768                 max_dist += tdist * tdist;
    769             }
    770         }
    771 
    772         x = GETJSAMPLE( cinfo->colormap[2][i] );
    773         if ( x < minc2 ) {
    774             tdist = ( x - minc2 ) * C2_SCALE;
    775             min_dist += tdist * tdist;
    776             tdist = ( x - maxc2 ) * C2_SCALE;
    777             max_dist += tdist * tdist;
    778         } else if ( x > maxc2 ) {
    779             tdist = ( x - maxc2 ) * C2_SCALE;
    780             min_dist += tdist * tdist;
    781             tdist = ( x - minc2 ) * C2_SCALE;
    782             max_dist += tdist * tdist;
    783         } else {
    784             /* within cell range so no contribution to min_dist */
    785             if ( x <= centerc2 ) {
    786                 tdist = ( x - maxc2 ) * C2_SCALE;
    787                 max_dist += tdist * tdist;
    788             } else {
    789                 tdist = ( x - minc2 ) * C2_SCALE;
    790                 max_dist += tdist * tdist;
    791             }
    792         }
    793 
    794         mindist[i] = min_dist;/* save away the results */
    795         if ( max_dist < minmaxdist ) {
    796             minmaxdist = max_dist;
    797         }
    798     }
    799 
    800     /* Now we know that no cell in the update box is more than minmaxdist
    801      * away from some colormap entry.  Therefore, only colors that are
    802      * within minmaxdist of some part of the box need be considered.
    803      */
    804     ncolors = 0;
    805     for ( i = 0; i < numcolors; i++ ) {
    806         if ( mindist[i] <= minmaxdist ) {
    807             colorlist[ncolors++] = (JSAMPLE) i;
    808         }
    809     }
    810     return ncolors;
    811 }
    812 
    813 
    814 LOCAL void
    815 find_best_colors( j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
    816                   int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[] ) {
    817 /* Find the closest colormap entry for each cell in the update box,
    818  * given the list of candidate colors prepared by find_nearby_colors.
    819  * Return the indexes of the closest entries in the bestcolor[] array.
    820  * This routine uses Thomas' incremental distance calculation method to
    821  * find the distance from a colormap entry to successive cells in the box.
    822  */
    823     int ic0, ic1, ic2;
    824     int i, icolor;
    825     register INT32 * bptr;  /* pointer into bestdist[] array */
    826     JSAMPLE * cptr;     /* pointer into bestcolor[] array */
    827     INT32 dist0, dist1;     /* initial distance values */
    828     register INT32 dist2;   /* current distance in inner loop */
    829     INT32 xx0, xx1;     /* distance increments */
    830     register INT32 xx2;
    831     INT32 inc0, inc1, inc2; /* initial values for increments */
    832     /* This array holds the distance to the nearest-so-far color for each cell */
    833     INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
    834 
    835     /* Initialize best-distance for each cell of the update box */
    836     bptr = bestdist;
    837     for ( i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i-- ) {
    838         *bptr++ = 0x7FFFFFFFL;
    839     }
    840 
    841     /* For each color selected by find_nearby_colors,
    842      * compute its distance to the center of each cell in the box.
    843      * If that's less than best-so-far, update best distance and color number.
    844      */
    845 
    846     /* Nominal steps between cell centers ("x" in Thomas article) */
    847 #define STEP_C0  ( ( 1 << C0_SHIFT ) * C0_SCALE )
    848 #define STEP_C1  ( ( 1 << C1_SHIFT ) * C1_SCALE )
    849 #define STEP_C2  ( ( 1 << C2_SHIFT ) * C2_SCALE )
    850 
    851     for ( i = 0; i < numcolors; i++ ) {
    852         icolor = GETJSAMPLE( colorlist[i] );
    853         /* Compute (square of) distance from minc0/c1/c2 to this color */
    854         inc0 = ( minc0 - GETJSAMPLE( cinfo->colormap[0][icolor] ) ) * C0_SCALE;
    855         dist0 = inc0 * inc0;
    856         inc1 = ( minc1 - GETJSAMPLE( cinfo->colormap[1][icolor] ) ) * C1_SCALE;
    857         dist0 += inc1 * inc1;
    858         inc2 = ( minc2 - GETJSAMPLE( cinfo->colormap[2][icolor] ) ) * C2_SCALE;
    859         dist0 += inc2 * inc2;
    860         /* Form the initial difference increments */
    861         inc0 = inc0 * ( 2 * STEP_C0 ) + STEP_C0 * STEP_C0;
    862         inc1 = inc1 * ( 2 * STEP_C1 ) + STEP_C1 * STEP_C1;
    863         inc2 = inc2 * ( 2 * STEP_C2 ) + STEP_C2 * STEP_C2;
    864         /* Now loop over all cells in box, updating distance per Thomas method */
    865         bptr = bestdist;
    866         cptr = bestcolor;
    867         xx0 = inc0;
    868         for ( ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0-- ) {
    869             dist1 = dist0;
    870             xx1 = inc1;
    871             for ( ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1-- ) {
    872                 dist2 = dist1;
    873                 xx2 = inc2;
    874                 for ( ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2-- ) {
    875                     if ( dist2 < *bptr ) {
    876                         *bptr = dist2;
    877                         *cptr = (JSAMPLE) icolor;
    878                     }
    879                     dist2 += xx2;
    880                     xx2 += 2 * STEP_C2 * STEP_C2;
    881                     bptr++;
    882                     cptr++;
    883                 }
    884                 dist1 += xx1;
    885                 xx1 += 2 * STEP_C1 * STEP_C1;
    886             }
    887             dist0 += xx0;
    888             xx0 += 2 * STEP_C0 * STEP_C0;
    889         }
    890     }
    891 }
    892 
    893 
    894 LOCAL void
    895 fill_inverse_cmap( j_decompress_ptr cinfo, int c0, int c1, int c2 ) {
    896 /* Fill the inverse-colormap entries in the update box that contains */
    897 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
    898 /* we can fill as many others as we wish.) */
    899     my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    900     hist3d histogram = cquantize->histogram;
    901     int minc0, minc1, minc2;/* lower left corner of update box */
    902     int ic0, ic1, ic2;
    903     register JSAMPLE * cptr;/* pointer into bestcolor[] array */
    904     register histptr cachep;/* pointer into main cache array */
    905     /* This array lists the candidate colormap indexes. */
    906     JSAMPLE colorlist[MAXNUMCOLORS];
    907     int numcolors;      /* number of candidate colors */
    908     /* This array holds the actually closest colormap index for each cell. */
    909     JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
    910 
    911     /* Convert cell coordinates to update box ID */
    912     c0 >>= BOX_C0_LOG;
    913     c1 >>= BOX_C1_LOG;
    914     c2 >>= BOX_C2_LOG;
    915 
    916     /* Compute true coordinates of update box's origin corner.
    917      * Actually we compute the coordinates of the center of the corner
    918      * histogram cell, which are the lower bounds of the volume we care about.
    919      */
    920     minc0 = ( c0 << BOX_C0_SHIFT ) + ( ( 1 << C0_SHIFT ) >> 1 );
    921     minc1 = ( c1 << BOX_C1_SHIFT ) + ( ( 1 << C1_SHIFT ) >> 1 );
    922     minc2 = ( c2 << BOX_C2_SHIFT ) + ( ( 1 << C2_SHIFT ) >> 1 );
    923 
    924     /* Determine which colormap entries are close enough to be candidates
    925      * for the nearest entry to some cell in the update box.
    926      */
    927     numcolors = find_nearby_colors( cinfo, minc0, minc1, minc2, colorlist );
    928 
    929     /* Determine the actually nearest colors. */
    930     find_best_colors( cinfo, minc0, minc1, minc2, numcolors, colorlist,
    931                       bestcolor );
    932 
    933     /* Save the best color numbers (plus 1) in the main cache array */
    934     c0 <<= BOX_C0_LOG;      /* convert ID back to base cell indexes */
    935     c1 <<= BOX_C1_LOG;
    936     c2 <<= BOX_C2_LOG;
    937     cptr = bestcolor;
    938     for ( ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++ ) {
    939         for ( ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++ ) {
    940             cachep = &histogram[c0 + ic0][c1 + ic1][c2];
    941             for ( ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++ ) {
    942                 *cachep++ = (histcell) ( GETJSAMPLE( *cptr++ ) + 1 );
    943             }
    944         }
    945     }
    946 }
    947 
    948 
    949 /*
    950  * Map some rows of pixels to the output colormapped representation.
    951  */
    952 
    953 METHODDEF void
    954 pass2_no_dither( j_decompress_ptr cinfo,
    955                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows ) {
    956 /* This version performs no dithering */
    957     my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    958     hist3d histogram = cquantize->histogram;
    959     register JSAMPROW inptr, outptr;
    960     register histptr cachep;
    961     register int c0, c1, c2;
    962     int row;
    963     JDIMENSION col;
    964     JDIMENSION width = cinfo->output_width;
    965 
    966     for ( row = 0; row < num_rows; row++ ) {
    967         inptr = input_buf[row];
    968         outptr = output_buf[row];
    969         for ( col = width; col > 0; col-- ) {
    970             /* get pixel value and index into the cache */
    971             c0 = GETJSAMPLE( *inptr++ ) >> C0_SHIFT;
    972             c1 = GETJSAMPLE( *inptr++ ) >> C1_SHIFT;
    973             c2 = GETJSAMPLE( *inptr++ ) >> C2_SHIFT;
    974             cachep = &histogram[c0][c1][c2];
    975             /* If we have not seen this color before, find nearest colormap entry */
    976             /* and update the cache */
    977             if ( *cachep == 0 ) {
    978                 fill_inverse_cmap( cinfo, c0, c1, c2 );
    979             }
    980             /* Now emit the colormap index for this cell */
    981             *outptr++ = (JSAMPLE) ( *cachep - 1 );
    982         }
    983     }
    984 }
    985 
    986 
    987 METHODDEF void
    988 pass2_fs_dither( j_decompress_ptr cinfo,
    989                  JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows ) {
    990 /* This version performs Floyd-Steinberg dithering */
    991     my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    992     hist3d histogram = cquantize->histogram;
    993     register LOCFSERROR cur0, cur1, cur2;/* current error or pixel value */
    994     LOCFSERROR belowerr0, belowerr1, belowerr2;/* error for pixel below cur */
    995     LOCFSERROR bpreverr0, bpreverr1, bpreverr2;/* error for below/prev col */
    996     register FSERRPTR errorptr; /* => fserrors[] at column before current */
    997     JSAMPROW inptr;     /* => current input pixel */
    998     JSAMPROW outptr;    /* => current output pixel */
    999     histptr cachep;
   1000     int dir;        /* +1 or -1 depending on direction */
   1001     int dir3;       /* 3*dir, for advancing inptr & errorptr */
   1002     int row;
   1003     JDIMENSION col;
   1004     JDIMENSION width = cinfo->output_width;
   1005     JSAMPLE * range_limit = cinfo->sample_range_limit;
   1006     int * error_limit = cquantize->error_limiter;
   1007     JSAMPROW colormap0 = cinfo->colormap[0];
   1008     JSAMPROW colormap1 = cinfo->colormap[1];
   1009     JSAMPROW colormap2 = cinfo->colormap[2];
   1010     SHIFT_TEMPS
   1011 
   1012     for ( row = 0; row < num_rows; row++ ) {
   1013         inptr = input_buf[row];
   1014         outptr = output_buf[row];
   1015         if ( cquantize->on_odd_row ) {
   1016             /* work right to left in this row */
   1017             inptr += ( width - 1 ) * 3;/* so point to rightmost pixel */
   1018             outptr += width - 1;
   1019             dir = -1;
   1020             dir3 = -3;
   1021             errorptr = cquantize->fserrors + ( width + 1 ) * 3;/* => entry after last column */
   1022             cquantize->on_odd_row = FALSE;/* flip for next time */
   1023         } else {
   1024             /* work left to right in this row */
   1025             dir = 1;
   1026             dir3 = 3;
   1027             errorptr = cquantize->fserrors;/* => entry before first real column */
   1028             cquantize->on_odd_row = TRUE;/* flip for next time */
   1029         }
   1030         /* Preset error values: no error propagated to first pixel from left */
   1031         cur0 = cur1 = cur2 = 0;
   1032         /* and no error propagated to row below yet */
   1033         belowerr0 = belowerr1 = belowerr2 = 0;
   1034         bpreverr0 = bpreverr1 = bpreverr2 = 0;
   1035 
   1036         for ( col = width; col > 0; col-- ) {
   1037             /* curN holds the error propagated from the previous pixel on the
   1038              * current line.  Add the error propagated from the previous line
   1039              * to form the complete error correction term for this pixel, and
   1040              * round the error term (which is expressed * 16) to an integer.
   1041              * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
   1042              * for either sign of the error value.
   1043              * Note: errorptr points to *previous* column's array entry.
   1044              */
   1045             cur0 = RIGHT_SHIFT( cur0 + errorptr[dir3 + 0] + 8, 4 );
   1046             cur1 = RIGHT_SHIFT( cur1 + errorptr[dir3 + 1] + 8, 4 );
   1047             cur2 = RIGHT_SHIFT( cur2 + errorptr[dir3 + 2] + 8, 4 );
   1048             /* Limit the error using transfer function set by init_error_limit.
   1049              * See comments with init_error_limit for rationale.
   1050              */
   1051             cur0 = error_limit[cur0];
   1052             cur1 = error_limit[cur1];
   1053             cur2 = error_limit[cur2];
   1054             /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
   1055              * The maximum error is +- MAXJSAMPLE (or less with error limiting);
   1056              * this sets the required size of the range_limit array.
   1057              */
   1058             cur0 += GETJSAMPLE( inptr[0] );
   1059             cur1 += GETJSAMPLE( inptr[1] );
   1060             cur2 += GETJSAMPLE( inptr[2] );
   1061             cur0 = GETJSAMPLE( range_limit[cur0] );
   1062             cur1 = GETJSAMPLE( range_limit[cur1] );
   1063             cur2 = GETJSAMPLE( range_limit[cur2] );
   1064             /* Index into the cache with adjusted pixel value */
   1065             cachep = &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
   1066             /* If we have not seen this color before, find nearest colormap */
   1067             /* entry and update the cache */
   1068             if ( *cachep == 0 ) {
   1069                 fill_inverse_cmap( cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT, cur2 >> C2_SHIFT );
   1070             }
   1071             /* Now emit the colormap index for this cell */
   1072             { register int pixcode = *cachep - 1;
   1073               *outptr = (JSAMPLE) pixcode;
   1074               /* Compute representation error for this pixel */
   1075               cur0 -= GETJSAMPLE( colormap0[pixcode] );
   1076               cur1 -= GETJSAMPLE( colormap1[pixcode] );
   1077               cur2 -= GETJSAMPLE( colormap2[pixcode] );
   1078             }
   1079             /* Compute error fractions to be propagated to adjacent pixels.
   1080              * Add these into the running sums, and simultaneously shift the
   1081              * next-line error sums left by 1 column.
   1082              */
   1083             { register LOCFSERROR bnexterr, delta;
   1084 
   1085               bnexterr = cur0;/* Process component 0 */
   1086               delta = cur0 * 2;
   1087               cur0 += delta;/* form error * 3 */
   1088               errorptr[0] = (FSERROR) ( bpreverr0 + cur0 );
   1089               cur0 += delta;/* form error * 5 */
   1090               bpreverr0 = belowerr0 + cur0;
   1091               belowerr0 = bnexterr;
   1092               cur0 += delta;/* form error * 7 */
   1093               bnexterr = cur1;/* Process component 1 */
   1094               delta = cur1 * 2;
   1095               cur1 += delta;/* form error * 3 */
   1096               errorptr[1] = (FSERROR) ( bpreverr1 + cur1 );
   1097               cur1 += delta;/* form error * 5 */
   1098               bpreverr1 = belowerr1 + cur1;
   1099               belowerr1 = bnexterr;
   1100               cur1 += delta;/* form error * 7 */
   1101               bnexterr = cur2;/* Process component 2 */
   1102               delta = cur2 * 2;
   1103               cur2 += delta;/* form error * 3 */
   1104               errorptr[2] = (FSERROR) ( bpreverr2 + cur2 );
   1105               cur2 += delta;/* form error * 5 */
   1106               bpreverr2 = belowerr2 + cur2;
   1107               belowerr2 = bnexterr;
   1108               cur2 += delta;/* form error * 7 */
   1109             }
   1110             /* At this point curN contains the 7/16 error value to be propagated
   1111              * to the next pixel on the current line, and all the errors for the
   1112              * next line have been shifted over.  We are therefore ready to move on.
   1113              */
   1114             inptr += dir3;  /* Advance pixel pointers to next column */
   1115             outptr += dir;
   1116             errorptr += dir3;/* advance errorptr to current column */
   1117         }
   1118         /* Post-loop cleanup: we must unload the final error values into the
   1119          * final fserrors[] entry.  Note we need not unload belowerrN because
   1120          * it is for the dummy column before or after the actual array.
   1121          */
   1122         errorptr[0] = (FSERROR) bpreverr0;/* unload prev errs into array */
   1123         errorptr[1] = (FSERROR) bpreverr1;
   1124         errorptr[2] = (FSERROR) bpreverr2;
   1125     }
   1126 }
   1127 
   1128 
   1129 /*
   1130  * Initialize the error-limiting transfer function (lookup table).
   1131  * The raw F-S error computation can potentially compute error values of up to
   1132  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
   1133  * much less, otherwise obviously wrong pixels will be created.  (Typical
   1134  * effects include weird fringes at color-area boundaries, isolated bright
   1135  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
   1136  * is to ensure that the "corners" of the color cube are allocated as output
   1137  * colors; then repeated errors in the same direction cannot cause cascading
   1138  * error buildup.  However, that only prevents the error from getting
   1139  * completely out of hand; Aaron Giles reports that error limiting improves
   1140  * the results even with corner colors allocated.
   1141  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
   1142  * well, but the smoother transfer function used below is even better.  Thanks
   1143  * to Aaron Giles for this idea.
   1144  */
   1145 
   1146 LOCAL void
   1147 init_error_limit( j_decompress_ptr cinfo ) {
   1148 /* Allocate and fill in the error_limiter table */
   1149     my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   1150     int * table;
   1151     int in, out;
   1152 
   1153     table = (int *) ( *cinfo->mem->alloc_small )
   1154             ( (j_common_ptr) cinfo, JPOOL_IMAGE, ( MAXJSAMPLE * 2 + 1 ) * SIZEOF( int ) );
   1155     table += MAXJSAMPLE;    /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
   1156     cquantize->error_limiter = table;
   1157 
   1158 #define STEPSIZE ( ( MAXJSAMPLE + 1 ) / 16 )
   1159     /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
   1160     out = 0;
   1161     for ( in = 0; in < STEPSIZE; in++, out++ ) {
   1162         table[in] = out;
   1163         table[-in] = -out;
   1164     }
   1165     /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
   1166     for (; in < STEPSIZE * 3; in++, out += ( in & 1 ) ? 0 : 1 ) {
   1167         table[in] = out;
   1168         table[-in] = -out;
   1169     }
   1170     /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
   1171     for (; in <= MAXJSAMPLE; in++ ) {
   1172         table[in] = out;
   1173         table[-in] = -out;
   1174     }
   1175 #undef STEPSIZE
   1176 }
   1177 
   1178 
   1179 /*
   1180  * Finish up at the end of each pass.
   1181  */
   1182 
   1183 METHODDEF void
   1184 finish_pass1( j_decompress_ptr cinfo ) {
   1185     my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   1186 
   1187     /* Select the representative colors and fill in cinfo->colormap */
   1188     cinfo->colormap = cquantize->sv_colormap;
   1189     select_colors( cinfo, cquantize->desired );
   1190     /* Force next pass to zero the color index table */
   1191     cquantize->needs_zeroed = TRUE;
   1192 }
   1193 
   1194 
   1195 METHODDEF void
   1196 finish_pass2( j_decompress_ptr cinfo ) {
   1197     /* no work */
   1198 }
   1199 
   1200 
   1201 /*
   1202  * Initialize for each processing pass.
   1203  */
   1204 
   1205 METHODDEF void
   1206 start_pass_2_quant( j_decompress_ptr cinfo, boolean is_pre_scan ) {
   1207     my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   1208     hist3d histogram = cquantize->histogram;
   1209     int i;
   1210 
   1211     /* Only F-S dithering or no dithering is supported. */
   1212     /* If user asks for ordered dither, give him F-S. */
   1213     if ( cinfo->dither_mode != JDITHER_NONE ) {
   1214         cinfo->dither_mode = JDITHER_FS;
   1215     }
   1216 
   1217     if ( is_pre_scan ) {
   1218         /* Set up method pointers */
   1219         cquantize->pub.color_quantize = prescan_quantize;
   1220         cquantize->pub.finish_pass = finish_pass1;
   1221         cquantize->needs_zeroed = TRUE;/* Always zero histogram */
   1222     } else {
   1223         /* Set up method pointers */
   1224         if ( cinfo->dither_mode == JDITHER_FS ) {
   1225             cquantize->pub.color_quantize = pass2_fs_dither;
   1226         } else {
   1227             cquantize->pub.color_quantize = pass2_no_dither;
   1228         }
   1229         cquantize->pub.finish_pass = finish_pass2;
   1230 
   1231         /* Make sure color count is acceptable */
   1232         i = cinfo->actual_number_of_colors;
   1233         if ( i < 1 ) {
   1234             ERREXIT1( cinfo, JERR_QUANT_FEW_COLORS, 1 );
   1235         }
   1236         if ( i > MAXNUMCOLORS ) {
   1237             ERREXIT1( cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS );
   1238         }
   1239 
   1240         if ( cinfo->dither_mode == JDITHER_FS ) {
   1241             size_t arraysize = (size_t) ( ( cinfo->output_width + 2 ) *
   1242                                          ( 3 * SIZEOF( FSERROR ) ) );
   1243             /* Allocate Floyd-Steinberg workspace if we didn't already. */
   1244             if ( cquantize->fserrors == NULL ) {
   1245                 cquantize->fserrors = (FSERRPTR) ( *cinfo->mem->alloc_large )
   1246                                       ( (j_common_ptr) cinfo, JPOOL_IMAGE, arraysize );
   1247             }
   1248             /* Initialize the propagated errors to zero. */
   1249             jzero_far( (void FAR *) cquantize->fserrors, arraysize );
   1250             /* Make the error-limit table if we didn't already. */
   1251             if ( cquantize->error_limiter == NULL ) {
   1252                 init_error_limit( cinfo );
   1253             }
   1254             cquantize->on_odd_row = FALSE;
   1255         }
   1256 
   1257     }
   1258     /* Zero the histogram or inverse color map, if necessary */
   1259     if ( cquantize->needs_zeroed ) {
   1260         for ( i = 0; i < HIST_C0_ELEMS; i++ ) {
   1261             jzero_far( (void FAR *) histogram[i],
   1262                       HIST_C1_ELEMS * HIST_C2_ELEMS * SIZEOF( histcell ) );
   1263         }
   1264         cquantize->needs_zeroed = FALSE;
   1265     }
   1266 }
   1267 
   1268 
   1269 /*
   1270  * Switch to a new external colormap between output passes.
   1271  */
   1272 
   1273 METHODDEF void
   1274 new_color_map_2_quant( j_decompress_ptr cinfo ) {
   1275     my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   1276 
   1277     /* Reset the inverse color map */
   1278     cquantize->needs_zeroed = TRUE;
   1279 }
   1280 
   1281 
   1282 /*
   1283  * Module initialization routine for 2-pass color quantization.
   1284  */
   1285 
   1286 GLOBAL void
   1287 jinit_2pass_quantizer( j_decompress_ptr cinfo ) {
   1288     my_cquantize_ptr cquantize;
   1289     int i;
   1290 
   1291     cquantize = (my_cquantize_ptr)
   1292                 ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
   1293                                              SIZEOF( my_cquantizer ) );
   1294     cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
   1295     cquantize->pub.start_pass = start_pass_2_quant;
   1296     cquantize->pub.new_color_map = new_color_map_2_quant;
   1297     cquantize->fserrors = NULL; /* flag optional arrays not allocated */
   1298     cquantize->error_limiter = NULL;
   1299 
   1300     /* Make sure jdmaster didn't give me a case I can't handle */
   1301     if ( cinfo->out_color_components != 3 ) {
   1302         ERREXIT( cinfo, JERR_NOTIMPL );
   1303     }
   1304 
   1305     /* Allocate the histogram/inverse colormap storage */
   1306     cquantize->histogram = (hist3d) ( *cinfo->mem->alloc_small )
   1307                            ( (j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF( hist2d ) );
   1308     for ( i = 0; i < HIST_C0_ELEMS; i++ ) {
   1309         cquantize->histogram[i] = (hist2d) ( *cinfo->mem->alloc_large )
   1310                                   ( (j_common_ptr) cinfo, JPOOL_IMAGE,
   1311                                    HIST_C1_ELEMS * HIST_C2_ELEMS * SIZEOF( histcell ) );
   1312     }
   1313     cquantize->needs_zeroed = TRUE;/* histogram is garbage now */
   1314 
   1315     /* Allocate storage for the completed colormap, if required.
   1316      * We do this now since it is FAR storage and may affect
   1317      * the memory manager's space calculations.
   1318      */
   1319     if ( cinfo->enable_2pass_quant ) {
   1320         /* Make sure color count is acceptable */
   1321         int desired = cinfo->desired_number_of_colors;
   1322         /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
   1323         if ( desired < 8 ) {
   1324             ERREXIT1( cinfo, JERR_QUANT_FEW_COLORS, 8 );
   1325         }
   1326         /* Make sure colormap indexes can be represented by JSAMPLEs */
   1327         if ( desired > MAXNUMCOLORS ) {
   1328             ERREXIT1( cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS );
   1329         }
   1330         cquantize->sv_colormap = ( *cinfo->mem->alloc_sarray )
   1331                                  ( (j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3 );
   1332         cquantize->desired = desired;
   1333     } else {
   1334         cquantize->sv_colormap = NULL;
   1335     }
   1336 
   1337     /* Only F-S dithering or no dithering is supported. */
   1338     /* If user asks for ordered dither, give him F-S. */
   1339     if ( cinfo->dither_mode != JDITHER_NONE ) {
   1340         cinfo->dither_mode = JDITHER_FS;
   1341     }
   1342 
   1343     /* Allocate Floyd-Steinberg workspace if necessary.
   1344      * This isn't really needed until pass 2, but again it is FAR storage.
   1345      * Although we will cope with a later change in dither_mode,
   1346      * we do not promise to honor max_memory_to_use if dither_mode changes.
   1347      */
   1348     if ( cinfo->dither_mode == JDITHER_FS ) {
   1349         cquantize->fserrors = (FSERRPTR) ( *cinfo->mem->alloc_large )
   1350                               ( (j_common_ptr) cinfo, JPOOL_IMAGE,
   1351                                (size_t) ( ( cinfo->output_width + 2 ) * ( 3 * SIZEOF( FSERROR ) ) ) );
   1352         /* Might as well create the error-limiting table too. */
   1353         init_error_limit( cinfo );
   1354     }
   1355 }
   1356 
   1357 #endif /* QUANT_2PASS_SUPPORTED */