jcphuff.c (24955B)
1 /* 2 * jcphuff.c 3 * 4 * Copyright (C) 1995, Thomas G. Lane. 5 * This file is part of the Independent JPEG Group's software. 6 * For conditions of distribution and use, see the accompanying README file. 7 * 8 * This file contains Huffman entropy encoding routines for progressive JPEG. 9 * 10 * We do not support output suspension in this module, since the library 11 * currently does not allow multiple-scan files to be written with output 12 * suspension. 13 */ 14 15 #define JPEG_INTERNALS 16 #include "jinclude.h" 17 #include "jpeglib.h" 18 #include "jchuff.h" /* Declarations shared with jchuff.c */ 19 20 #ifdef C_PROGRESSIVE_SUPPORTED 21 22 /* Expanded entropy encoder object for progressive Huffman encoding. */ 23 24 typedef struct { 25 struct jpeg_entropy_encoder pub; /* public fields */ 26 27 /* Mode flag: TRUE for optimization, FALSE for actual data output */ 28 boolean gather_statistics; 29 30 /* Bit-level coding status. 31 * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. 32 */ 33 JOCTET * next_output_byte; /* => next byte to write in buffer */ 34 size_t free_in_buffer; /* # of byte spaces remaining in buffer */ 35 INT32 put_buffer; /* current bit-accumulation buffer */ 36 int put_bits; /* # of bits now in it */ 37 j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ 38 39 /* Coding status for DC components */ 40 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ 41 42 /* Coding status for AC components */ 43 int ac_tbl_no; /* the table number of the single component */ 44 unsigned int EOBRUN; /* run length of EOBs */ 45 unsigned int BE; /* # of buffered correction bits before MCU */ 46 char * bit_buffer; /* buffer for correction bits (1 per char) */ 47 /* packing correction bits tightly would save some space but cost time... */ 48 49 unsigned int restarts_to_go; /* MCUs left in this restart interval */ 50 int next_restart_num; /* next restart number to write (0-7) */ 51 52 /* Pointers to derived tables (these workspaces have image lifespan). 53 * Since any one scan codes only DC or only AC, we only need one set 54 * of tables, not one for DC and one for AC. 55 */ 56 c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; 57 58 /* Statistics tables for optimization; again, one set is enough */ 59 long * count_ptrs[NUM_HUFF_TBLS]; 60 } phuff_entropy_encoder; 61 62 typedef phuff_entropy_encoder * phuff_entropy_ptr; 63 64 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit 65 * buffer can hold. Larger sizes may slightly improve compression, but 66 * 1000 is already well into the realm of overkill. 67 * The minimum safe size is 64 bits. 68 */ 69 70 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ 71 72 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. 73 * We assume that int right shift is unsigned if INT32 right shift is, 74 * which should be safe. 75 */ 76 77 #ifdef RIGHT_SHIFT_IS_UNSIGNED 78 #define ISHIFT_TEMPS int ishift_temp; 79 #define IRIGHT_SHIFT(x,shft) \ 80 ((ishift_temp = (x)) < 0 ? \ 81 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ 82 (ishift_temp >> (shft))) 83 #else 84 #define ISHIFT_TEMPS 85 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) 86 #endif 87 88 /* Forward declarations */ 89 METHODDEF boolean encode_mcu_DC_first JPP((j_compress_ptr cinfo, 90 JBLOCKROW *MCU_data)); 91 METHODDEF boolean encode_mcu_AC_first JPP((j_compress_ptr cinfo, 92 JBLOCKROW *MCU_data)); 93 METHODDEF boolean encode_mcu_DC_refine JPP((j_compress_ptr cinfo, 94 JBLOCKROW *MCU_data)); 95 METHODDEF boolean encode_mcu_AC_refine JPP((j_compress_ptr cinfo, 96 JBLOCKROW *MCU_data)); 97 METHODDEF void finish_pass_phuff JPP((j_compress_ptr cinfo)); 98 METHODDEF void finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); 99 100 101 /* 102 * Initialize for a Huffman-compressed scan using progressive JPEG. 103 */ 104 105 METHODDEF void 106 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) 107 { 108 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 109 boolean is_DC_band; 110 int ci, tbl; 111 jpeg_component_info * compptr; 112 113 entropy->cinfo = cinfo; 114 entropy->gather_statistics = gather_statistics; 115 116 is_DC_band = (cinfo->Ss == 0); 117 118 /* We assume jcmaster.c already validated the scan parameters. */ 119 120 /* Select execution routines */ 121 if (cinfo->Ah == 0) { 122 if (is_DC_band) 123 entropy->pub.encode_mcu = encode_mcu_DC_first; 124 else 125 entropy->pub.encode_mcu = encode_mcu_AC_first; 126 } else { 127 if (is_DC_band) 128 entropy->pub.encode_mcu = encode_mcu_DC_refine; 129 else { 130 entropy->pub.encode_mcu = encode_mcu_AC_refine; 131 /* AC refinement needs a correction bit buffer */ 132 if (entropy->bit_buffer == NULL) 133 entropy->bit_buffer = (char *) 134 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 135 MAX_CORR_BITS * SIZEOF(char)); 136 } 137 } 138 if (gather_statistics) 139 entropy->pub.finish_pass = finish_pass_gather_phuff; 140 else 141 entropy->pub.finish_pass = finish_pass_phuff; 142 143 /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 144 * for AC coefficients. 145 */ 146 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 147 compptr = cinfo->cur_comp_info[ci]; 148 /* Initialize DC predictions to 0 */ 149 entropy->last_dc_val[ci] = 0; 150 /* Make sure requested tables are present */ 151 /* (In gather mode, tables need not be allocated yet) */ 152 if (is_DC_band) { 153 if (cinfo->Ah != 0) /* DC refinement needs no table */ 154 continue; 155 tbl = compptr->dc_tbl_no; 156 if (tbl < 0 || tbl >= NUM_HUFF_TBLS || 157 (cinfo->dc_huff_tbl_ptrs[tbl] == NULL && !gather_statistics)) 158 ERREXIT1(cinfo,JERR_NO_HUFF_TABLE, tbl); 159 } else { 160 entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; 161 if (tbl < 0 || tbl >= NUM_HUFF_TBLS || 162 (cinfo->ac_huff_tbl_ptrs[tbl] == NULL && !gather_statistics)) 163 ERREXIT1(cinfo,JERR_NO_HUFF_TABLE, tbl); 164 } 165 if (gather_statistics) { 166 /* Allocate and zero the statistics tables */ 167 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ 168 if (entropy->count_ptrs[tbl] == NULL) 169 entropy->count_ptrs[tbl] = (long *) 170 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 171 257 * SIZEOF(long)); 172 MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); 173 } else { 174 /* Compute derived values for Huffman tables */ 175 /* We may do this more than once for a table, but it's not expensive */ 176 if (is_DC_band) 177 jpeg_make_c_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[tbl], 178 & entropy->derived_tbls[tbl]); 179 else 180 jpeg_make_c_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[tbl], 181 & entropy->derived_tbls[tbl]); 182 } 183 } 184 185 /* Initialize AC stuff */ 186 entropy->EOBRUN = 0; 187 entropy->BE = 0; 188 189 /* Initialize bit buffer to empty */ 190 entropy->put_buffer = 0; 191 entropy->put_bits = 0; 192 193 /* Initialize restart stuff */ 194 entropy->restarts_to_go = cinfo->restart_interval; 195 entropy->next_restart_num = 0; 196 } 197 198 199 /* Outputting bytes to the file. 200 * NB: these must be called only when actually outputting, 201 * that is, entropy->gather_statistics == FALSE. 202 */ 203 204 /* Emit a byte */ 205 #define emit_byte(entropy,val) \ 206 { *(entropy)->next_output_byte++ = (JOCTET) (val); \ 207 if (--(entropy)->free_in_buffer == 0) \ 208 dump_buffer(entropy); } 209 210 211 LOCAL void 212 dump_buffer (phuff_entropy_ptr entropy) 213 /* Empty the output buffer; we do not support suspension in this module. */ 214 { 215 struct jpeg_destination_mgr * dest = entropy->cinfo->dest; 216 217 if (! (*dest->empty_output_buffer) (entropy->cinfo)) 218 ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); 219 /* After a successful buffer dump, must reset buffer pointers */ 220 entropy->next_output_byte = dest->next_output_byte; 221 entropy->free_in_buffer = dest->free_in_buffer; 222 } 223 224 225 /* Outputting bits to the file */ 226 227 /* Only the right 24 bits of put_buffer are used; the valid bits are 228 * left-justified in this part. At most 16 bits can be passed to emit_bits 229 * in one call, and we never retain more than 7 bits in put_buffer 230 * between calls, so 24 bits are sufficient. 231 */ 232 233 INLINE 234 LOCAL void 235 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) 236 /* Emit some bits, unless we are in gather mode */ 237 { 238 /* This routine is heavily used, so it's worth coding tightly. */ 239 register INT32 put_buffer = (INT32) code; 240 register int put_bits = entropy->put_bits; 241 242 /* if size is 0, caller used an invalid Huffman table entry */ 243 if (size == 0) 244 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); 245 246 if (entropy->gather_statistics) 247 return; /* do nothing if we're only getting stats */ 248 249 put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ 250 251 put_bits += size; /* new number of bits in buffer */ 252 253 put_buffer <<= 24 - put_bits; /* align incoming bits */ 254 255 put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ 256 257 while (put_bits >= 8) { 258 int c = (int) ((put_buffer >> 16) & 0xFF); 259 260 emit_byte(entropy, c); 261 if (c == 0xFF) { /* need to stuff a zero byte? */ 262 emit_byte(entropy, 0); 263 } 264 put_buffer <<= 8; 265 put_bits -= 8; 266 } 267 268 entropy->put_buffer = put_buffer; /* update variables */ 269 entropy->put_bits = put_bits; 270 } 271 272 273 LOCAL void 274 flush_bits (phuff_entropy_ptr entropy) 275 { 276 emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ 277 entropy->put_buffer = 0; /* and reset bit-buffer to empty */ 278 entropy->put_bits = 0; 279 } 280 281 282 /* 283 * Emit (or just count) a Huffman symbol. 284 */ 285 286 INLINE 287 LOCAL void 288 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) 289 { 290 if (entropy->gather_statistics) 291 entropy->count_ptrs[tbl_no][symbol]++; 292 else { 293 c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; 294 emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); 295 } 296 } 297 298 299 /* 300 * Emit bits from a correction bit buffer. 301 */ 302 303 LOCAL void 304 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, 305 unsigned int nbits) 306 { 307 if (entropy->gather_statistics) 308 return; /* no real work */ 309 310 while (nbits > 0) { 311 emit_bits(entropy, (unsigned int) (*bufstart), 1); 312 bufstart++; 313 nbits--; 314 } 315 } 316 317 318 /* 319 * Emit any pending EOBRUN symbol. 320 */ 321 322 LOCAL void 323 emit_eobrun (phuff_entropy_ptr entropy) 324 { 325 register int temp, nbits; 326 327 if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ 328 temp = entropy->EOBRUN; 329 nbits = 0; 330 while ((temp >>= 1)) 331 nbits++; 332 333 emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); 334 if (nbits) 335 emit_bits(entropy, entropy->EOBRUN, nbits); 336 337 entropy->EOBRUN = 0; 338 339 /* Emit any buffered correction bits */ 340 emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); 341 entropy->BE = 0; 342 } 343 } 344 345 346 /* 347 * Emit a restart marker & resynchronize predictions. 348 */ 349 350 LOCAL void 351 emit_restart (phuff_entropy_ptr entropy, int restart_num) 352 { 353 int ci; 354 355 emit_eobrun(entropy); 356 357 if (! entropy->gather_statistics) { 358 flush_bits(entropy); 359 emit_byte(entropy, 0xFF); 360 emit_byte(entropy, JPEG_RST0 + restart_num); 361 } 362 363 if (entropy->cinfo->Ss == 0) { 364 /* Re-initialize DC predictions to 0 */ 365 for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) 366 entropy->last_dc_val[ci] = 0; 367 } else { 368 /* Re-initialize all AC-related fields to 0 */ 369 entropy->EOBRUN = 0; 370 entropy->BE = 0; 371 } 372 } 373 374 375 /* 376 * MCU encoding for DC initial scan (either spectral selection, 377 * or first pass of successive approximation). 378 */ 379 380 METHODDEF boolean 381 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) 382 { 383 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 384 register int temp, temp2; 385 register int nbits; 386 int blkn, ci; 387 int Al = cinfo->Al; 388 JBLOCKROW block; 389 jpeg_component_info * compptr; 390 ISHIFT_TEMPS 391 392 entropy->next_output_byte = cinfo->dest->next_output_byte; 393 entropy->free_in_buffer = cinfo->dest->free_in_buffer; 394 395 /* Emit restart marker if needed */ 396 if (cinfo->restart_interval) 397 if (entropy->restarts_to_go == 0) 398 emit_restart(entropy, entropy->next_restart_num); 399 400 /* Encode the MCU data blocks */ 401 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 402 block = MCU_data[blkn]; 403 ci = cinfo->MCU_membership[blkn]; 404 compptr = cinfo->cur_comp_info[ci]; 405 406 /* Compute the DC value after the required point transform by Al. 407 * This is simply an arithmetic right shift. 408 */ 409 temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); 410 411 /* DC differences are figured on the point-transformed values. */ 412 temp = temp2 - entropy->last_dc_val[ci]; 413 entropy->last_dc_val[ci] = temp2; 414 415 /* Encode the DC coefficient difference per section G.1.2.1 */ 416 temp2 = temp; 417 if (temp < 0) { 418 temp = -temp; /* temp is abs value of input */ 419 /* For a negative input, want temp2 = bitwise complement of abs(input) */ 420 /* This code assumes we are on a two's complement machine */ 421 temp2--; 422 } 423 424 /* Find the number of bits needed for the magnitude of the coefficient */ 425 nbits = 0; 426 while (temp) { 427 nbits++; 428 temp >>= 1; 429 } 430 431 /* Count/emit the Huffman-coded symbol for the number of bits */ 432 emit_symbol(entropy, compptr->dc_tbl_no, nbits); 433 434 /* Emit that number of bits of the value, if positive, */ 435 /* or the complement of its magnitude, if negative. */ 436 if (nbits) /* emit_bits rejects calls with size 0 */ 437 emit_bits(entropy, (unsigned int) temp2, nbits); 438 } 439 440 cinfo->dest->next_output_byte = entropy->next_output_byte; 441 cinfo->dest->free_in_buffer = entropy->free_in_buffer; 442 443 /* Update restart-interval state too */ 444 if (cinfo->restart_interval) { 445 if (entropy->restarts_to_go == 0) { 446 entropy->restarts_to_go = cinfo->restart_interval; 447 entropy->next_restart_num++; 448 entropy->next_restart_num &= 7; 449 } 450 entropy->restarts_to_go--; 451 } 452 453 return TRUE; 454 } 455 456 457 /* 458 * MCU encoding for AC initial scan (either spectral selection, 459 * or first pass of successive approximation). 460 */ 461 462 METHODDEF boolean 463 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) 464 { 465 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 466 register int temp, temp2; 467 register int nbits; 468 register int r, k; 469 int Se = cinfo->Se; 470 int Al = cinfo->Al; 471 JBLOCKROW block; 472 473 entropy->next_output_byte = cinfo->dest->next_output_byte; 474 entropy->free_in_buffer = cinfo->dest->free_in_buffer; 475 476 /* Emit restart marker if needed */ 477 if (cinfo->restart_interval) 478 if (entropy->restarts_to_go == 0) 479 emit_restart(entropy, entropy->next_restart_num); 480 481 /* Encode the MCU data block */ 482 block = MCU_data[0]; 483 484 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ 485 486 r = 0; /* r = run length of zeros */ 487 488 for (k = cinfo->Ss; k <= Se; k++) { 489 if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { 490 r++; 491 continue; 492 } 493 /* We must apply the point transform by Al. For AC coefficients this 494 * is an integer division with rounding towards 0. To do this portably 495 * in C, we shift after obtaining the absolute value; so the code is 496 * interwoven with finding the abs value (temp) and output bits (temp2). 497 */ 498 if (temp < 0) { 499 temp = -temp; /* temp is abs value of input */ 500 temp >>= Al; /* apply the point transform */ 501 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ 502 temp2 = ~temp; 503 } else { 504 temp >>= Al; /* apply the point transform */ 505 temp2 = temp; 506 } 507 /* Watch out for case that nonzero coef is zero after point transform */ 508 if (temp == 0) { 509 r++; 510 continue; 511 } 512 513 /* Emit any pending EOBRUN */ 514 if (entropy->EOBRUN > 0) 515 emit_eobrun(entropy); 516 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ 517 while (r > 15) { 518 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); 519 r -= 16; 520 } 521 522 /* Find the number of bits needed for the magnitude of the coefficient */ 523 nbits = 1; /* there must be at least one 1 bit */ 524 while ((temp >>= 1)) 525 nbits++; 526 527 /* Count/emit Huffman symbol for run length / number of bits */ 528 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); 529 530 /* Emit that number of bits of the value, if positive, */ 531 /* or the complement of its magnitude, if negative. */ 532 emit_bits(entropy, (unsigned int) temp2, nbits); 533 534 r = 0; /* reset zero run length */ 535 } 536 537 if (r > 0) { /* If there are trailing zeroes, */ 538 entropy->EOBRUN++; /* count an EOB */ 539 if (entropy->EOBRUN == 0x7FFF) 540 emit_eobrun(entropy); /* force it out to avoid overflow */ 541 } 542 543 cinfo->dest->next_output_byte = entropy->next_output_byte; 544 cinfo->dest->free_in_buffer = entropy->free_in_buffer; 545 546 /* Update restart-interval state too */ 547 if (cinfo->restart_interval) { 548 if (entropy->restarts_to_go == 0) { 549 entropy->restarts_to_go = cinfo->restart_interval; 550 entropy->next_restart_num++; 551 entropy->next_restart_num &= 7; 552 } 553 entropy->restarts_to_go--; 554 } 555 556 return TRUE; 557 } 558 559 560 /* 561 * MCU encoding for DC successive approximation refinement scan. 562 * Note: we assume such scans can be multi-component, although the spec 563 * is not very clear on the point. 564 */ 565 566 METHODDEF boolean 567 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) 568 { 569 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 570 register int temp; 571 int blkn; 572 int Al = cinfo->Al; 573 JBLOCKROW block; 574 575 entropy->next_output_byte = cinfo->dest->next_output_byte; 576 entropy->free_in_buffer = cinfo->dest->free_in_buffer; 577 578 /* Emit restart marker if needed */ 579 if (cinfo->restart_interval) 580 if (entropy->restarts_to_go == 0) 581 emit_restart(entropy, entropy->next_restart_num); 582 583 /* Encode the MCU data blocks */ 584 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 585 block = MCU_data[blkn]; 586 587 /* We simply emit the Al'th bit of the DC coefficient value. */ 588 temp = (*block)[0]; 589 emit_bits(entropy, (unsigned int) (temp >> Al), 1); 590 } 591 592 cinfo->dest->next_output_byte = entropy->next_output_byte; 593 cinfo->dest->free_in_buffer = entropy->free_in_buffer; 594 595 /* Update restart-interval state too */ 596 if (cinfo->restart_interval) { 597 if (entropy->restarts_to_go == 0) { 598 entropy->restarts_to_go = cinfo->restart_interval; 599 entropy->next_restart_num++; 600 entropy->next_restart_num &= 7; 601 } 602 entropy->restarts_to_go--; 603 } 604 605 return TRUE; 606 } 607 608 609 /* 610 * MCU encoding for AC successive approximation refinement scan. 611 */ 612 613 METHODDEF boolean 614 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) 615 { 616 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 617 register int temp; 618 register int r, k; 619 int EOB; 620 char *BR_buffer; 621 unsigned int BR; 622 int Se = cinfo->Se; 623 int Al = cinfo->Al; 624 JBLOCKROW block; 625 int absvalues[DCTSIZE2]; 626 627 entropy->next_output_byte = cinfo->dest->next_output_byte; 628 entropy->free_in_buffer = cinfo->dest->free_in_buffer; 629 630 /* Emit restart marker if needed */ 631 if (cinfo->restart_interval) 632 if (entropy->restarts_to_go == 0) 633 emit_restart(entropy, entropy->next_restart_num); 634 635 /* Encode the MCU data block */ 636 block = MCU_data[0]; 637 638 /* It is convenient to make a pre-pass to determine the transformed 639 * coefficients' absolute values and the EOB position. 640 */ 641 EOB = 0; 642 for (k = cinfo->Ss; k <= Se; k++) { 643 temp = (*block)[jpeg_natural_order[k]]; 644 /* We must apply the point transform by Al. For AC coefficients this 645 * is an integer division with rounding towards 0. To do this portably 646 * in C, we shift after obtaining the absolute value. 647 */ 648 if (temp < 0) 649 temp = -temp; /* temp is abs value of input */ 650 temp >>= Al; /* apply the point transform */ 651 absvalues[k] = temp; /* save abs value for main pass */ 652 if (temp == 1) 653 EOB = k; /* EOB = index of last newly-nonzero coef */ 654 } 655 656 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ 657 658 r = 0; /* r = run length of zeros */ 659 BR = 0; /* BR = count of buffered bits added now */ 660 BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ 661 662 for (k = cinfo->Ss; k <= Se; k++) { 663 if ((temp = absvalues[k]) == 0) { 664 r++; 665 continue; 666 } 667 668 /* Emit any required ZRLs, but not if they can be folded into EOB */ 669 while (r > 15 && k <= EOB) { 670 /* emit any pending EOBRUN and the BE correction bits */ 671 emit_eobrun(entropy); 672 /* Emit ZRL */ 673 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); 674 r -= 16; 675 /* Emit buffered correction bits that must be associated with ZRL */ 676 emit_buffered_bits(entropy, BR_buffer, BR); 677 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ 678 BR = 0; 679 } 680 681 /* If the coef was previously nonzero, it only needs a correction bit. 682 * NOTE: a straight translation of the spec's figure G.7 would suggest 683 * that we also need to test r > 15. But if r > 15, we can only get here 684 * if k > EOB, which implies that this coefficient is not 1. 685 */ 686 if (temp > 1) { 687 /* The correction bit is the next bit of the absolute value. */ 688 BR_buffer[BR++] = (char) (temp & 1); 689 continue; 690 } 691 692 /* Emit any pending EOBRUN and the BE correction bits */ 693 emit_eobrun(entropy); 694 695 /* Count/emit Huffman symbol for run length / number of bits */ 696 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); 697 698 /* Emit output bit for newly-nonzero coef */ 699 temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; 700 emit_bits(entropy, (unsigned int) temp, 1); 701 702 /* Emit buffered correction bits that must be associated with this code */ 703 emit_buffered_bits(entropy, BR_buffer, BR); 704 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ 705 BR = 0; 706 r = 0; /* reset zero run length */ 707 } 708 709 if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ 710 entropy->EOBRUN++; /* count an EOB */ 711 entropy->BE += BR; /* concat my correction bits to older ones */ 712 /* We force out the EOB if we risk either: 713 * 1. overflow of the EOB counter; 714 * 2. overflow of the correction bit buffer during the next MCU. 715 */ 716 if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) 717 emit_eobrun(entropy); 718 } 719 720 cinfo->dest->next_output_byte = entropy->next_output_byte; 721 cinfo->dest->free_in_buffer = entropy->free_in_buffer; 722 723 /* Update restart-interval state too */ 724 if (cinfo->restart_interval) { 725 if (entropy->restarts_to_go == 0) { 726 entropy->restarts_to_go = cinfo->restart_interval; 727 entropy->next_restart_num++; 728 entropy->next_restart_num &= 7; 729 } 730 entropy->restarts_to_go--; 731 } 732 733 return TRUE; 734 } 735 736 737 /* 738 * Finish up at the end of a Huffman-compressed progressive scan. 739 */ 740 741 METHODDEF void 742 finish_pass_phuff (j_compress_ptr cinfo) 743 { 744 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 745 746 entropy->next_output_byte = cinfo->dest->next_output_byte; 747 entropy->free_in_buffer = cinfo->dest->free_in_buffer; 748 749 /* Flush out any buffered data */ 750 emit_eobrun(entropy); 751 flush_bits(entropy); 752 753 cinfo->dest->next_output_byte = entropy->next_output_byte; 754 cinfo->dest->free_in_buffer = entropy->free_in_buffer; 755 } 756 757 758 /* 759 * Finish up a statistics-gathering pass and create the new Huffman tables. 760 */ 761 762 METHODDEF void 763 finish_pass_gather_phuff (j_compress_ptr cinfo) 764 { 765 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; 766 boolean is_DC_band; 767 int ci, tbl; 768 jpeg_component_info * compptr; 769 JHUFF_TBL **htblptr; 770 boolean did[NUM_HUFF_TBLS]; 771 772 /* Flush out buffered data (all we care about is counting the EOB symbol) */ 773 emit_eobrun(entropy); 774 775 is_DC_band = (cinfo->Ss == 0); 776 777 /* It's important not to apply jpeg_gen_optimal_table more than once 778 * per table, because it clobbers the input frequency counts! 779 */ 780 MEMZERO(did, SIZEOF(did)); 781 782 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 783 compptr = cinfo->cur_comp_info[ci]; 784 if (is_DC_band) { 785 if (cinfo->Ah != 0) /* DC refinement needs no table */ 786 continue; 787 tbl = compptr->dc_tbl_no; 788 } else { 789 tbl = compptr->ac_tbl_no; 790 } 791 if (! did[tbl]) { 792 if (is_DC_band) 793 htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; 794 else 795 htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; 796 if (*htblptr == NULL) 797 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); 798 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); 799 did[tbl] = TRUE; 800 } 801 } 802 } 803 804 805 /* 806 * Module initialization routine for progressive Huffman entropy encoding. 807 */ 808 809 GLOBAL void 810 jinit_phuff_encoder (j_compress_ptr cinfo) 811 { 812 phuff_entropy_ptr entropy; 813 int i; 814 815 entropy = (phuff_entropy_ptr) 816 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 817 SIZEOF(phuff_entropy_encoder)); 818 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; 819 entropy->pub.start_pass = start_pass_phuff; 820 821 /* Mark tables unallocated */ 822 for (i = 0; i < NUM_HUFF_TBLS; i++) { 823 entropy->derived_tbls[i] = NULL; 824 entropy->count_ptrs[i] = NULL; 825 } 826 entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ 827 } 828 829 #endif /* C_PROGRESSIVE_SUPPORTED */