Quake-III-Arena

Quake III Arena GPL Source Release
Log | Files | Refs

jcphuff.c (24955B)


      1 /*
      2  * jcphuff.c
      3  *
      4  * Copyright (C) 1995, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains Huffman entropy encoding routines for progressive JPEG.
      9  *
     10  * We do not support output suspension in this module, since the library
     11  * currently does not allow multiple-scan files to be written with output
     12  * suspension.
     13  */
     14 
     15 #define JPEG_INTERNALS
     16 #include "jinclude.h"
     17 #include "jpeglib.h"
     18 #include "jchuff.h"		/* Declarations shared with jchuff.c */
     19 
     20 #ifdef C_PROGRESSIVE_SUPPORTED
     21 
     22 /* Expanded entropy encoder object for progressive Huffman encoding. */
     23 
     24 typedef struct {
     25   struct jpeg_entropy_encoder pub; /* public fields */
     26 
     27   /* Mode flag: TRUE for optimization, FALSE for actual data output */
     28   boolean gather_statistics;
     29 
     30   /* Bit-level coding status.
     31    * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
     32    */
     33   JOCTET * next_output_byte;	/* => next byte to write in buffer */
     34   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
     35   INT32 put_buffer;		/* current bit-accumulation buffer */
     36   int put_bits;			/* # of bits now in it */
     37   j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
     38 
     39   /* Coding status for DC components */
     40   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     41 
     42   /* Coding status for AC components */
     43   int ac_tbl_no;		/* the table number of the single component */
     44   unsigned int EOBRUN;		/* run length of EOBs */
     45   unsigned int BE;		/* # of buffered correction bits before MCU */
     46   char * bit_buffer;		/* buffer for correction bits (1 per char) */
     47   /* packing correction bits tightly would save some space but cost time... */
     48 
     49   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     50   int next_restart_num;		/* next restart number to write (0-7) */
     51 
     52   /* Pointers to derived tables (these workspaces have image lifespan).
     53    * Since any one scan codes only DC or only AC, we only need one set
     54    * of tables, not one for DC and one for AC.
     55    */
     56   c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
     57 
     58   /* Statistics tables for optimization; again, one set is enough */
     59   long * count_ptrs[NUM_HUFF_TBLS];
     60 } phuff_entropy_encoder;
     61 
     62 typedef phuff_entropy_encoder * phuff_entropy_ptr;
     63 
     64 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
     65  * buffer can hold.  Larger sizes may slightly improve compression, but
     66  * 1000 is already well into the realm of overkill.
     67  * The minimum safe size is 64 bits.
     68  */
     69 
     70 #define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
     71 
     72 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
     73  * We assume that int right shift is unsigned if INT32 right shift is,
     74  * which should be safe.
     75  */
     76 
     77 #ifdef RIGHT_SHIFT_IS_UNSIGNED
     78 #define ISHIFT_TEMPS	int ishift_temp;
     79 #define IRIGHT_SHIFT(x,shft)  \
     80 	((ishift_temp = (x)) < 0 ? \
     81 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
     82 	 (ishift_temp >> (shft)))
     83 #else
     84 #define ISHIFT_TEMPS
     85 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
     86 #endif
     87 
     88 /* Forward declarations */
     89 METHODDEF boolean encode_mcu_DC_first JPP((j_compress_ptr cinfo,
     90 					   JBLOCKROW *MCU_data));
     91 METHODDEF boolean encode_mcu_AC_first JPP((j_compress_ptr cinfo,
     92 					   JBLOCKROW *MCU_data));
     93 METHODDEF boolean encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
     94 					    JBLOCKROW *MCU_data));
     95 METHODDEF boolean encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
     96 					    JBLOCKROW *MCU_data));
     97 METHODDEF void finish_pass_phuff JPP((j_compress_ptr cinfo));
     98 METHODDEF void finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
     99 
    100 
    101 /*
    102  * Initialize for a Huffman-compressed scan using progressive JPEG.
    103  */
    104 
    105 METHODDEF void
    106 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
    107 {  
    108   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    109   boolean is_DC_band;
    110   int ci, tbl;
    111   jpeg_component_info * compptr;
    112 
    113   entropy->cinfo = cinfo;
    114   entropy->gather_statistics = gather_statistics;
    115 
    116   is_DC_band = (cinfo->Ss == 0);
    117 
    118   /* We assume jcmaster.c already validated the scan parameters. */
    119 
    120   /* Select execution routines */
    121   if (cinfo->Ah == 0) {
    122     if (is_DC_band)
    123       entropy->pub.encode_mcu = encode_mcu_DC_first;
    124     else
    125       entropy->pub.encode_mcu = encode_mcu_AC_first;
    126   } else {
    127     if (is_DC_band)
    128       entropy->pub.encode_mcu = encode_mcu_DC_refine;
    129     else {
    130       entropy->pub.encode_mcu = encode_mcu_AC_refine;
    131       /* AC refinement needs a correction bit buffer */
    132       if (entropy->bit_buffer == NULL)
    133 	entropy->bit_buffer = (char *)
    134 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    135 				      MAX_CORR_BITS * SIZEOF(char));
    136     }
    137   }
    138   if (gather_statistics)
    139     entropy->pub.finish_pass = finish_pass_gather_phuff;
    140   else
    141     entropy->pub.finish_pass = finish_pass_phuff;
    142 
    143   /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
    144    * for AC coefficients.
    145    */
    146   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    147     compptr = cinfo->cur_comp_info[ci];
    148     /* Initialize DC predictions to 0 */
    149     entropy->last_dc_val[ci] = 0;
    150     /* Make sure requested tables are present */
    151     /* (In gather mode, tables need not be allocated yet) */
    152     if (is_DC_band) {
    153       if (cinfo->Ah != 0)	/* DC refinement needs no table */
    154 	continue;
    155       tbl = compptr->dc_tbl_no;
    156       if (tbl < 0 || tbl >= NUM_HUFF_TBLS ||
    157 	  (cinfo->dc_huff_tbl_ptrs[tbl] == NULL && !gather_statistics))
    158 	ERREXIT1(cinfo,JERR_NO_HUFF_TABLE, tbl);
    159     } else {
    160       entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
    161       if (tbl < 0 || tbl >= NUM_HUFF_TBLS ||
    162           (cinfo->ac_huff_tbl_ptrs[tbl] == NULL && !gather_statistics))
    163         ERREXIT1(cinfo,JERR_NO_HUFF_TABLE, tbl);
    164     }
    165     if (gather_statistics) {
    166       /* Allocate and zero the statistics tables */
    167       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    168       if (entropy->count_ptrs[tbl] == NULL)
    169 	entropy->count_ptrs[tbl] = (long *)
    170 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    171 				      257 * SIZEOF(long));
    172       MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
    173     } else {
    174       /* Compute derived values for Huffman tables */
    175       /* We may do this more than once for a table, but it's not expensive */
    176       if (is_DC_band)
    177         jpeg_make_c_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[tbl],
    178 				& entropy->derived_tbls[tbl]);
    179       else
    180         jpeg_make_c_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[tbl],
    181 				& entropy->derived_tbls[tbl]);
    182     }
    183   }
    184 
    185   /* Initialize AC stuff */
    186   entropy->EOBRUN = 0;
    187   entropy->BE = 0;
    188 
    189   /* Initialize bit buffer to empty */
    190   entropy->put_buffer = 0;
    191   entropy->put_bits = 0;
    192 
    193   /* Initialize restart stuff */
    194   entropy->restarts_to_go = cinfo->restart_interval;
    195   entropy->next_restart_num = 0;
    196 }
    197 
    198 
    199 /* Outputting bytes to the file.
    200  * NB: these must be called only when actually outputting,
    201  * that is, entropy->gather_statistics == FALSE.
    202  */
    203 
    204 /* Emit a byte */
    205 #define emit_byte(entropy,val)  \
    206 	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
    207 	  if (--(entropy)->free_in_buffer == 0)  \
    208 	    dump_buffer(entropy); }
    209 
    210 
    211 LOCAL void
    212 dump_buffer (phuff_entropy_ptr entropy)
    213 /* Empty the output buffer; we do not support suspension in this module. */
    214 {
    215   struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
    216 
    217   if (! (*dest->empty_output_buffer) (entropy->cinfo))
    218     ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
    219   /* After a successful buffer dump, must reset buffer pointers */
    220   entropy->next_output_byte = dest->next_output_byte;
    221   entropy->free_in_buffer = dest->free_in_buffer;
    222 }
    223 
    224 
    225 /* Outputting bits to the file */
    226 
    227 /* Only the right 24 bits of put_buffer are used; the valid bits are
    228  * left-justified in this part.  At most 16 bits can be passed to emit_bits
    229  * in one call, and we never retain more than 7 bits in put_buffer
    230  * between calls, so 24 bits are sufficient.
    231  */
    232 
    233 INLINE
    234 LOCAL void
    235 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
    236 /* Emit some bits, unless we are in gather mode */
    237 {
    238   /* This routine is heavily used, so it's worth coding tightly. */
    239   register INT32 put_buffer = (INT32) code;
    240   register int put_bits = entropy->put_bits;
    241 
    242   /* if size is 0, caller used an invalid Huffman table entry */
    243   if (size == 0)
    244     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
    245 
    246   if (entropy->gather_statistics)
    247     return;			/* do nothing if we're only getting stats */
    248 
    249   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
    250   
    251   put_bits += size;		/* new number of bits in buffer */
    252   
    253   put_buffer <<= 24 - put_bits; /* align incoming bits */
    254 
    255   put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
    256 
    257   while (put_bits >= 8) {
    258     int c = (int) ((put_buffer >> 16) & 0xFF);
    259     
    260     emit_byte(entropy, c);
    261     if (c == 0xFF) {		/* need to stuff a zero byte? */
    262       emit_byte(entropy, 0);
    263     }
    264     put_buffer <<= 8;
    265     put_bits -= 8;
    266   }
    267 
    268   entropy->put_buffer = put_buffer; /* update variables */
    269   entropy->put_bits = put_bits;
    270 }
    271 
    272 
    273 LOCAL void
    274 flush_bits (phuff_entropy_ptr entropy)
    275 {
    276   emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
    277   entropy->put_buffer = 0;     /* and reset bit-buffer to empty */
    278   entropy->put_bits = 0;
    279 }
    280 
    281 
    282 /*
    283  * Emit (or just count) a Huffman symbol.
    284  */
    285 
    286 INLINE
    287 LOCAL void
    288 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
    289 {
    290   if (entropy->gather_statistics)
    291     entropy->count_ptrs[tbl_no][symbol]++;
    292   else {
    293     c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
    294     emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
    295   }
    296 }
    297 
    298 
    299 /*
    300  * Emit bits from a correction bit buffer.
    301  */
    302 
    303 LOCAL void
    304 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
    305 		    unsigned int nbits)
    306 {
    307   if (entropy->gather_statistics)
    308     return;			/* no real work */
    309 
    310   while (nbits > 0) {
    311     emit_bits(entropy, (unsigned int) (*bufstart), 1);
    312     bufstart++;
    313     nbits--;
    314   }
    315 }
    316 
    317 
    318 /*
    319  * Emit any pending EOBRUN symbol.
    320  */
    321 
    322 LOCAL void
    323 emit_eobrun (phuff_entropy_ptr entropy)
    324 {
    325   register int temp, nbits;
    326 
    327   if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
    328     temp = entropy->EOBRUN;
    329     nbits = 0;
    330     while ((temp >>= 1))
    331       nbits++;
    332 
    333     emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
    334     if (nbits)
    335       emit_bits(entropy, entropy->EOBRUN, nbits);
    336 
    337     entropy->EOBRUN = 0;
    338 
    339     /* Emit any buffered correction bits */
    340     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
    341     entropy->BE = 0;
    342   }
    343 }
    344 
    345 
    346 /*
    347  * Emit a restart marker & resynchronize predictions.
    348  */
    349 
    350 LOCAL void
    351 emit_restart (phuff_entropy_ptr entropy, int restart_num)
    352 {
    353   int ci;
    354 
    355   emit_eobrun(entropy);
    356 
    357   if (! entropy->gather_statistics) {
    358     flush_bits(entropy);
    359     emit_byte(entropy, 0xFF);
    360     emit_byte(entropy, JPEG_RST0 + restart_num);
    361   }
    362 
    363   if (entropy->cinfo->Ss == 0) {
    364     /* Re-initialize DC predictions to 0 */
    365     for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
    366       entropy->last_dc_val[ci] = 0;
    367   } else {
    368     /* Re-initialize all AC-related fields to 0 */
    369     entropy->EOBRUN = 0;
    370     entropy->BE = 0;
    371   }
    372 }
    373 
    374 
    375 /*
    376  * MCU encoding for DC initial scan (either spectral selection,
    377  * or first pass of successive approximation).
    378  */
    379 
    380 METHODDEF boolean
    381 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    382 {
    383   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    384   register int temp, temp2;
    385   register int nbits;
    386   int blkn, ci;
    387   int Al = cinfo->Al;
    388   JBLOCKROW block;
    389   jpeg_component_info * compptr;
    390   ISHIFT_TEMPS
    391 
    392   entropy->next_output_byte = cinfo->dest->next_output_byte;
    393   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    394 
    395   /* Emit restart marker if needed */
    396   if (cinfo->restart_interval)
    397     if (entropy->restarts_to_go == 0)
    398       emit_restart(entropy, entropy->next_restart_num);
    399 
    400   /* Encode the MCU data blocks */
    401   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    402     block = MCU_data[blkn];
    403     ci = cinfo->MCU_membership[blkn];
    404     compptr = cinfo->cur_comp_info[ci];
    405 
    406     /* Compute the DC value after the required point transform by Al.
    407      * This is simply an arithmetic right shift.
    408      */
    409     temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
    410 
    411     /* DC differences are figured on the point-transformed values. */
    412     temp = temp2 - entropy->last_dc_val[ci];
    413     entropy->last_dc_val[ci] = temp2;
    414 
    415     /* Encode the DC coefficient difference per section G.1.2.1 */
    416     temp2 = temp;
    417     if (temp < 0) {
    418       temp = -temp;		/* temp is abs value of input */
    419       /* For a negative input, want temp2 = bitwise complement of abs(input) */
    420       /* This code assumes we are on a two's complement machine */
    421       temp2--;
    422     }
    423     
    424     /* Find the number of bits needed for the magnitude of the coefficient */
    425     nbits = 0;
    426     while (temp) {
    427       nbits++;
    428       temp >>= 1;
    429     }
    430     
    431     /* Count/emit the Huffman-coded symbol for the number of bits */
    432     emit_symbol(entropy, compptr->dc_tbl_no, nbits);
    433     
    434     /* Emit that number of bits of the value, if positive, */
    435     /* or the complement of its magnitude, if negative. */
    436     if (nbits)			/* emit_bits rejects calls with size 0 */
    437       emit_bits(entropy, (unsigned int) temp2, nbits);
    438   }
    439 
    440   cinfo->dest->next_output_byte = entropy->next_output_byte;
    441   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    442 
    443   /* Update restart-interval state too */
    444   if (cinfo->restart_interval) {
    445     if (entropy->restarts_to_go == 0) {
    446       entropy->restarts_to_go = cinfo->restart_interval;
    447       entropy->next_restart_num++;
    448       entropy->next_restart_num &= 7;
    449     }
    450     entropy->restarts_to_go--;
    451   }
    452 
    453   return TRUE;
    454 }
    455 
    456 
    457 /*
    458  * MCU encoding for AC initial scan (either spectral selection,
    459  * or first pass of successive approximation).
    460  */
    461 
    462 METHODDEF boolean
    463 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    464 {
    465   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    466   register int temp, temp2;
    467   register int nbits;
    468   register int r, k;
    469   int Se = cinfo->Se;
    470   int Al = cinfo->Al;
    471   JBLOCKROW block;
    472 
    473   entropy->next_output_byte = cinfo->dest->next_output_byte;
    474   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    475 
    476   /* Emit restart marker if needed */
    477   if (cinfo->restart_interval)
    478     if (entropy->restarts_to_go == 0)
    479       emit_restart(entropy, entropy->next_restart_num);
    480 
    481   /* Encode the MCU data block */
    482   block = MCU_data[0];
    483 
    484   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
    485   
    486   r = 0;			/* r = run length of zeros */
    487    
    488   for (k = cinfo->Ss; k <= Se; k++) {
    489     if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
    490       r++;
    491       continue;
    492     }
    493     /* We must apply the point transform by Al.  For AC coefficients this
    494      * is an integer division with rounding towards 0.  To do this portably
    495      * in C, we shift after obtaining the absolute value; so the code is
    496      * interwoven with finding the abs value (temp) and output bits (temp2).
    497      */
    498     if (temp < 0) {
    499       temp = -temp;		/* temp is abs value of input */
    500       temp >>= Al;		/* apply the point transform */
    501       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
    502       temp2 = ~temp;
    503     } else {
    504       temp >>= Al;		/* apply the point transform */
    505       temp2 = temp;
    506     }
    507     /* Watch out for case that nonzero coef is zero after point transform */
    508     if (temp == 0) {
    509       r++;
    510       continue;
    511     }
    512 
    513     /* Emit any pending EOBRUN */
    514     if (entropy->EOBRUN > 0)
    515       emit_eobrun(entropy);
    516     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    517     while (r > 15) {
    518       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
    519       r -= 16;
    520     }
    521 
    522     /* Find the number of bits needed for the magnitude of the coefficient */
    523     nbits = 1;			/* there must be at least one 1 bit */
    524     while ((temp >>= 1))
    525       nbits++;
    526 
    527     /* Count/emit Huffman symbol for run length / number of bits */
    528     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
    529 
    530     /* Emit that number of bits of the value, if positive, */
    531     /* or the complement of its magnitude, if negative. */
    532     emit_bits(entropy, (unsigned int) temp2, nbits);
    533 
    534     r = 0;			/* reset zero run length */
    535   }
    536 
    537   if (r > 0) {			/* If there are trailing zeroes, */
    538     entropy->EOBRUN++;		/* count an EOB */
    539     if (entropy->EOBRUN == 0x7FFF)
    540       emit_eobrun(entropy);	/* force it out to avoid overflow */
    541   }
    542 
    543   cinfo->dest->next_output_byte = entropy->next_output_byte;
    544   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    545 
    546   /* Update restart-interval state too */
    547   if (cinfo->restart_interval) {
    548     if (entropy->restarts_to_go == 0) {
    549       entropy->restarts_to_go = cinfo->restart_interval;
    550       entropy->next_restart_num++;
    551       entropy->next_restart_num &= 7;
    552     }
    553     entropy->restarts_to_go--;
    554   }
    555 
    556   return TRUE;
    557 }
    558 
    559 
    560 /*
    561  * MCU encoding for DC successive approximation refinement scan.
    562  * Note: we assume such scans can be multi-component, although the spec
    563  * is not very clear on the point.
    564  */
    565 
    566 METHODDEF boolean
    567 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    568 {
    569   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    570   register int temp;
    571   int blkn;
    572   int Al = cinfo->Al;
    573   JBLOCKROW block;
    574 
    575   entropy->next_output_byte = cinfo->dest->next_output_byte;
    576   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    577 
    578   /* Emit restart marker if needed */
    579   if (cinfo->restart_interval)
    580     if (entropy->restarts_to_go == 0)
    581       emit_restart(entropy, entropy->next_restart_num);
    582 
    583   /* Encode the MCU data blocks */
    584   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    585     block = MCU_data[blkn];
    586 
    587     /* We simply emit the Al'th bit of the DC coefficient value. */
    588     temp = (*block)[0];
    589     emit_bits(entropy, (unsigned int) (temp >> Al), 1);
    590   }
    591 
    592   cinfo->dest->next_output_byte = entropy->next_output_byte;
    593   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    594 
    595   /* Update restart-interval state too */
    596   if (cinfo->restart_interval) {
    597     if (entropy->restarts_to_go == 0) {
    598       entropy->restarts_to_go = cinfo->restart_interval;
    599       entropy->next_restart_num++;
    600       entropy->next_restart_num &= 7;
    601     }
    602     entropy->restarts_to_go--;
    603   }
    604 
    605   return TRUE;
    606 }
    607 
    608 
    609 /*
    610  * MCU encoding for AC successive approximation refinement scan.
    611  */
    612 
    613 METHODDEF boolean
    614 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    615 {
    616   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    617   register int temp;
    618   register int r, k;
    619   int EOB;
    620   char *BR_buffer;
    621   unsigned int BR;
    622   int Se = cinfo->Se;
    623   int Al = cinfo->Al;
    624   JBLOCKROW block;
    625   int absvalues[DCTSIZE2];
    626 
    627   entropy->next_output_byte = cinfo->dest->next_output_byte;
    628   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    629 
    630   /* Emit restart marker if needed */
    631   if (cinfo->restart_interval)
    632     if (entropy->restarts_to_go == 0)
    633       emit_restart(entropy, entropy->next_restart_num);
    634 
    635   /* Encode the MCU data block */
    636   block = MCU_data[0];
    637 
    638   /* It is convenient to make a pre-pass to determine the transformed
    639    * coefficients' absolute values and the EOB position.
    640    */
    641   EOB = 0;
    642   for (k = cinfo->Ss; k <= Se; k++) {
    643     temp = (*block)[jpeg_natural_order[k]];
    644     /* We must apply the point transform by Al.  For AC coefficients this
    645      * is an integer division with rounding towards 0.  To do this portably
    646      * in C, we shift after obtaining the absolute value.
    647      */
    648     if (temp < 0)
    649       temp = -temp;		/* temp is abs value of input */
    650     temp >>= Al;		/* apply the point transform */
    651     absvalues[k] = temp;	/* save abs value for main pass */
    652     if (temp == 1)
    653       EOB = k;			/* EOB = index of last newly-nonzero coef */
    654   }
    655 
    656   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
    657   
    658   r = 0;			/* r = run length of zeros */
    659   BR = 0;			/* BR = count of buffered bits added now */
    660   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
    661 
    662   for (k = cinfo->Ss; k <= Se; k++) {
    663     if ((temp = absvalues[k]) == 0) {
    664       r++;
    665       continue;
    666     }
    667 
    668     /* Emit any required ZRLs, but not if they can be folded into EOB */
    669     while (r > 15 && k <= EOB) {
    670       /* emit any pending EOBRUN and the BE correction bits */
    671       emit_eobrun(entropy);
    672       /* Emit ZRL */
    673       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
    674       r -= 16;
    675       /* Emit buffered correction bits that must be associated with ZRL */
    676       emit_buffered_bits(entropy, BR_buffer, BR);
    677       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
    678       BR = 0;
    679     }
    680 
    681     /* If the coef was previously nonzero, it only needs a correction bit.
    682      * NOTE: a straight translation of the spec's figure G.7 would suggest
    683      * that we also need to test r > 15.  But if r > 15, we can only get here
    684      * if k > EOB, which implies that this coefficient is not 1.
    685      */
    686     if (temp > 1) {
    687       /* The correction bit is the next bit of the absolute value. */
    688       BR_buffer[BR++] = (char) (temp & 1);
    689       continue;
    690     }
    691 
    692     /* Emit any pending EOBRUN and the BE correction bits */
    693     emit_eobrun(entropy);
    694 
    695     /* Count/emit Huffman symbol for run length / number of bits */
    696     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
    697 
    698     /* Emit output bit for newly-nonzero coef */
    699     temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
    700     emit_bits(entropy, (unsigned int) temp, 1);
    701 
    702     /* Emit buffered correction bits that must be associated with this code */
    703     emit_buffered_bits(entropy, BR_buffer, BR);
    704     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
    705     BR = 0;
    706     r = 0;			/* reset zero run length */
    707   }
    708 
    709   if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
    710     entropy->EOBRUN++;		/* count an EOB */
    711     entropy->BE += BR;		/* concat my correction bits to older ones */
    712     /* We force out the EOB if we risk either:
    713      * 1. overflow of the EOB counter;
    714      * 2. overflow of the correction bit buffer during the next MCU.
    715      */
    716     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
    717       emit_eobrun(entropy);
    718   }
    719 
    720   cinfo->dest->next_output_byte = entropy->next_output_byte;
    721   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    722 
    723   /* Update restart-interval state too */
    724   if (cinfo->restart_interval) {
    725     if (entropy->restarts_to_go == 0) {
    726       entropy->restarts_to_go = cinfo->restart_interval;
    727       entropy->next_restart_num++;
    728       entropy->next_restart_num &= 7;
    729     }
    730     entropy->restarts_to_go--;
    731   }
    732 
    733   return TRUE;
    734 }
    735 
    736 
    737 /*
    738  * Finish up at the end of a Huffman-compressed progressive scan.
    739  */
    740 
    741 METHODDEF void
    742 finish_pass_phuff (j_compress_ptr cinfo)
    743 {   
    744   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    745 
    746   entropy->next_output_byte = cinfo->dest->next_output_byte;
    747   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    748 
    749   /* Flush out any buffered data */
    750   emit_eobrun(entropy);
    751   flush_bits(entropy);
    752 
    753   cinfo->dest->next_output_byte = entropy->next_output_byte;
    754   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    755 }
    756 
    757 
    758 /*
    759  * Finish up a statistics-gathering pass and create the new Huffman tables.
    760  */
    761 
    762 METHODDEF void
    763 finish_pass_gather_phuff (j_compress_ptr cinfo)
    764 {
    765   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    766   boolean is_DC_band;
    767   int ci, tbl;
    768   jpeg_component_info * compptr;
    769   JHUFF_TBL **htblptr;
    770   boolean did[NUM_HUFF_TBLS];
    771 
    772   /* Flush out buffered data (all we care about is counting the EOB symbol) */
    773   emit_eobrun(entropy);
    774 
    775   is_DC_band = (cinfo->Ss == 0);
    776 
    777   /* It's important not to apply jpeg_gen_optimal_table more than once
    778    * per table, because it clobbers the input frequency counts!
    779    */
    780   MEMZERO(did, SIZEOF(did));
    781 
    782   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    783     compptr = cinfo->cur_comp_info[ci];
    784     if (is_DC_band) {
    785       if (cinfo->Ah != 0)	/* DC refinement needs no table */
    786 	continue;
    787       tbl = compptr->dc_tbl_no;
    788     } else {
    789       tbl = compptr->ac_tbl_no;
    790     }
    791     if (! did[tbl]) {
    792       if (is_DC_band)
    793         htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
    794       else
    795         htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
    796       if (*htblptr == NULL)
    797         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    798       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
    799       did[tbl] = TRUE;
    800     }
    801   }
    802 }
    803 
    804 
    805 /*
    806  * Module initialization routine for progressive Huffman entropy encoding.
    807  */
    808 
    809 GLOBAL void
    810 jinit_phuff_encoder (j_compress_ptr cinfo)
    811 {
    812   phuff_entropy_ptr entropy;
    813   int i;
    814 
    815   entropy = (phuff_entropy_ptr)
    816     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    817 				SIZEOF(phuff_entropy_encoder));
    818   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    819   entropy->pub.start_pass = start_pass_phuff;
    820 
    821   /* Mark tables unallocated */
    822   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    823     entropy->derived_tbls[i] = NULL;
    824     entropy->count_ptrs[i] = NULL;
    825   }
    826   entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
    827 }
    828 
    829 #endif /* C_PROGRESSIVE_SUPPORTED */