Quake-III-Arena

Quake III Arena GPL Source Release
Log | Files | Refs

jdcoefct.c (24794B)


      1 /*
      2  * jdcoefct.c
      3  *
      4  * Copyright (C) 1994-1995, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains the coefficient buffer controller for decompression.
      9  * This controller is the top level of the JPEG decompressor proper.
     10  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
     11  *
     12  * In buffered-image mode, this controller is the interface between
     13  * input-oriented processing and output-oriented processing.
     14  * Also, the input side (only) is used when reading a file for transcoding.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 
     21 /* Block smoothing is only applicable for progressive JPEG, so: */
     22 #ifndef D_PROGRESSIVE_SUPPORTED
     23 #undef BLOCK_SMOOTHING_SUPPORTED
     24 #endif
     25 
     26 /* Private buffer controller object */
     27 
     28 typedef struct {
     29   struct jpeg_d_coef_controller pub; /* public fields */
     30 
     31   /* These variables keep track of the current location of the input side. */
     32   /* cinfo->input_iMCU_row is also used for this. */
     33   JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
     34   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
     35   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
     36 
     37   /* The output side's location is represented by cinfo->output_iMCU_row. */
     38 
     39   /* In single-pass modes, it's sufficient to buffer just one MCU.
     40    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
     41    * and let the entropy decoder write into that workspace each time.
     42    * (On 80x86, the workspace is FAR even though it's not really very big;
     43    * this is to keep the module interfaces unchanged when a large coefficient
     44    * buffer is necessary.)
     45    * In multi-pass modes, this array points to the current MCU's blocks
     46    * within the virtual arrays; it is used only by the input side.
     47    */
     48   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
     49 
     50 #ifdef D_MULTISCAN_FILES_SUPPORTED
     51   /* In multi-pass modes, we need a virtual block array for each component. */
     52   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
     53 #endif
     54 
     55 #ifdef BLOCK_SMOOTHING_SUPPORTED
     56   /* When doing block smoothing, we latch coefficient Al values here */
     57   int * coef_bits_latch;
     58 #define SAVED_COEFS  6		/* we save coef_bits[0..5] */
     59 #endif
     60 } my_coef_controller;
     61 
     62 typedef my_coef_controller * my_coef_ptr;
     63 
     64 /* Forward declarations */
     65 METHODDEF int decompress_onepass
     66 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     67 #ifdef D_MULTISCAN_FILES_SUPPORTED
     68 METHODDEF int decompress_data
     69 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     70 #endif
     71 #ifdef BLOCK_SMOOTHING_SUPPORTED
     72 LOCAL boolean smoothing_ok JPP((j_decompress_ptr cinfo));
     73 METHODDEF int decompress_smooth_data
     74 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     75 #endif
     76 
     77 
     78 LOCAL void
     79 start_iMCU_row (j_decompress_ptr cinfo)
     80 /* Reset within-iMCU-row counters for a new row (input side) */
     81 {
     82   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     83 
     84   /* In an interleaved scan, an MCU row is the same as an iMCU row.
     85    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
     86    * But at the bottom of the image, process only what's left.
     87    */
     88   if (cinfo->comps_in_scan > 1) {
     89     coef->MCU_rows_per_iMCU_row = 1;
     90   } else {
     91     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
     92       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
     93     else
     94       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
     95   }
     96 
     97   coef->MCU_ctr = 0;
     98   coef->MCU_vert_offset = 0;
     99 }
    100 
    101 
    102 /*
    103  * Initialize for an input processing pass.
    104  */
    105 
    106 METHODDEF void
    107 start_input_pass (j_decompress_ptr cinfo)
    108 {
    109   cinfo->input_iMCU_row = 0;
    110   start_iMCU_row(cinfo);
    111 }
    112 
    113 
    114 /*
    115  * Initialize for an output processing pass.
    116  */
    117 
    118 METHODDEF void
    119 start_output_pass (j_decompress_ptr cinfo)
    120 {
    121 #ifdef BLOCK_SMOOTHING_SUPPORTED
    122   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    123 
    124   /* If multipass, check to see whether to use block smoothing on this pass */
    125   if (coef->pub.coef_arrays != NULL) {
    126     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
    127       coef->pub.decompress_data = decompress_smooth_data;
    128     else
    129       coef->pub.decompress_data = decompress_data;
    130   }
    131 #endif
    132   cinfo->output_iMCU_row = 0;
    133 }
    134 
    135 
    136 /*
    137  * Decompress and return some data in the single-pass case.
    138  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
    139  * Input and output must run in lockstep since we have only a one-MCU buffer.
    140  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    141  *
    142  * NB: output_buf contains a plane for each component in image.
    143  * For single pass, this is the same as the components in the scan.
    144  */
    145 
    146 METHODDEF int
    147 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    148 {
    149   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    150   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    151   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
    152   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    153   int blkn, ci, xindex, yindex, yoffset, useful_width;
    154   JSAMPARRAY output_ptr;
    155   JDIMENSION start_col, output_col;
    156   jpeg_component_info *compptr;
    157   inverse_DCT_method_ptr inverse_DCT;
    158 
    159   /* Loop to process as much as one whole iMCU row */
    160   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    161        yoffset++) {
    162     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
    163 	 MCU_col_num++) {
    164       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
    165       jzero_far((void FAR *) coef->MCU_buffer[0],
    166 		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
    167       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    168 	/* Suspension forced; update state counters and exit */
    169 	coef->MCU_vert_offset = yoffset;
    170 	coef->MCU_ctr = MCU_col_num;
    171 	return JPEG_SUSPENDED;
    172       }
    173       /* Determine where data should go in output_buf and do the IDCT thing.
    174        * We skip dummy blocks at the right and bottom edges (but blkn gets
    175        * incremented past them!).  Note the inner loop relies on having
    176        * allocated the MCU_buffer[] blocks sequentially.
    177        */
    178       blkn = 0;			/* index of current DCT block within MCU */
    179       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    180 	compptr = cinfo->cur_comp_info[ci];
    181 	/* Don't bother to IDCT an uninteresting component. */
    182 	if (! compptr->component_needed) {
    183 	  blkn += compptr->MCU_blocks;
    184 	  continue;
    185 	}
    186 	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
    187 	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
    188 						    : compptr->last_col_width;
    189 	output_ptr = output_buf[ci] + yoffset * compptr->DCT_scaled_size;
    190 	start_col = MCU_col_num * compptr->MCU_sample_width;
    191 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    192 	  if (cinfo->input_iMCU_row < last_iMCU_row ||
    193 	      yoffset+yindex < compptr->last_row_height) {
    194 	    output_col = start_col;
    195 	    for (xindex = 0; xindex < useful_width; xindex++) {
    196 	      (*inverse_DCT) (cinfo, compptr,
    197 			      (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
    198 			      output_ptr, output_col);
    199 	      output_col += compptr->DCT_scaled_size;
    200 	    }
    201 	  }
    202 	  blkn += compptr->MCU_width;
    203 	  output_ptr += compptr->DCT_scaled_size;
    204 	}
    205       }
    206     }
    207     /* Completed an MCU row, but perhaps not an iMCU row */
    208     coef->MCU_ctr = 0;
    209   }
    210   /* Completed the iMCU row, advance counters for next one */
    211   cinfo->output_iMCU_row++;
    212   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    213     start_iMCU_row(cinfo);
    214     return JPEG_ROW_COMPLETED;
    215   }
    216   /* Completed the scan */
    217   (*cinfo->inputctl->finish_input_pass) (cinfo);
    218   return JPEG_SCAN_COMPLETED;
    219 }
    220 
    221 
    222 /*
    223  * Dummy consume-input routine for single-pass operation.
    224  */
    225 
    226 METHODDEF int
    227 dummy_consume_data (j_decompress_ptr cinfo)
    228 {
    229   return JPEG_SUSPENDED;	/* Always indicate nothing was done */
    230 }
    231 
    232 
    233 #ifdef D_MULTISCAN_FILES_SUPPORTED
    234 
    235 /*
    236  * Consume input data and store it in the full-image coefficient buffer.
    237  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
    238  * ie, v_samp_factor block rows for each component in the scan.
    239  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    240  */
    241 
    242 METHODDEF int
    243 consume_data (j_decompress_ptr cinfo)
    244 {
    245   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    246   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    247   int blkn, ci, xindex, yindex, yoffset;
    248   JDIMENSION start_col;
    249   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
    250   JBLOCKROW buffer_ptr;
    251   jpeg_component_info *compptr;
    252 
    253   /* Align the virtual buffers for the components used in this scan. */
    254   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    255     compptr = cinfo->cur_comp_info[ci];
    256     buffer[ci] = (*cinfo->mem->access_virt_barray)
    257       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
    258        cinfo->input_iMCU_row * compptr->v_samp_factor,
    259        (JDIMENSION) compptr->v_samp_factor, TRUE);
    260     /* Note: entropy decoder expects buffer to be zeroed,
    261      * but this is handled automatically by the memory manager
    262      * because we requested a pre-zeroed array.
    263      */
    264   }
    265 
    266   /* Loop to process one whole iMCU row */
    267   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    268        yoffset++) {
    269     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
    270 	 MCU_col_num++) {
    271       /* Construct list of pointers to DCT blocks belonging to this MCU */
    272       blkn = 0;			/* index of current DCT block within MCU */
    273       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    274 	compptr = cinfo->cur_comp_info[ci];
    275 	start_col = MCU_col_num * compptr->MCU_width;
    276 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    277 	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    278 	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    279 	    coef->MCU_buffer[blkn++] = buffer_ptr++;
    280 	  }
    281 	}
    282       }
    283       /* Try to fetch the MCU. */
    284       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    285 	/* Suspension forced; update state counters and exit */
    286 	coef->MCU_vert_offset = yoffset;
    287 	coef->MCU_ctr = MCU_col_num;
    288 	return JPEG_SUSPENDED;
    289       }
    290     }
    291     /* Completed an MCU row, but perhaps not an iMCU row */
    292     coef->MCU_ctr = 0;
    293   }
    294   /* Completed the iMCU row, advance counters for next one */
    295   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    296     start_iMCU_row(cinfo);
    297     return JPEG_ROW_COMPLETED;
    298   }
    299   /* Completed the scan */
    300   (*cinfo->inputctl->finish_input_pass) (cinfo);
    301   return JPEG_SCAN_COMPLETED;
    302 }
    303 
    304 
    305 /*
    306  * Decompress and return some data in the multi-pass case.
    307  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
    308  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    309  *
    310  * NB: output_buf contains a plane for each component in image.
    311  */
    312 
    313 METHODDEF int
    314 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    315 {
    316   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    317   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    318   JDIMENSION block_num;
    319   int ci, block_row, block_rows;
    320   JBLOCKARRAY buffer;
    321   JBLOCKROW buffer_ptr;
    322   JSAMPARRAY output_ptr;
    323   JDIMENSION output_col;
    324   jpeg_component_info *compptr;
    325   inverse_DCT_method_ptr inverse_DCT;
    326 
    327   /* Force some input to be done if we are getting ahead of the input. */
    328   while (cinfo->input_scan_number < cinfo->output_scan_number ||
    329 	 (cinfo->input_scan_number == cinfo->output_scan_number &&
    330 	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
    331     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
    332       return JPEG_SUSPENDED;
    333   }
    334 
    335   /* OK, output from the virtual arrays. */
    336   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    337        ci++, compptr++) {
    338     /* Don't bother to IDCT an uninteresting component. */
    339     if (! compptr->component_needed)
    340       continue;
    341     /* Align the virtual buffer for this component. */
    342     buffer = (*cinfo->mem->access_virt_barray)
    343       ((j_common_ptr) cinfo, coef->whole_image[ci],
    344        cinfo->output_iMCU_row * compptr->v_samp_factor,
    345        (JDIMENSION) compptr->v_samp_factor, FALSE);
    346     /* Count non-dummy DCT block rows in this iMCU row. */
    347     if (cinfo->output_iMCU_row < last_iMCU_row)
    348       block_rows = compptr->v_samp_factor;
    349     else {
    350       /* NB: can't use last_row_height here; it is input-side-dependent! */
    351       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    352       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    353     }
    354     inverse_DCT = cinfo->idct->inverse_DCT[ci];
    355     output_ptr = output_buf[ci];
    356     /* Loop over all DCT blocks to be processed. */
    357     for (block_row = 0; block_row < block_rows; block_row++) {
    358       buffer_ptr = buffer[block_row];
    359       output_col = 0;
    360       for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
    361 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
    362 			output_ptr, output_col);
    363 	buffer_ptr++;
    364 	output_col += compptr->DCT_scaled_size;
    365       }
    366       output_ptr += compptr->DCT_scaled_size;
    367     }
    368   }
    369 
    370   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    371     return JPEG_ROW_COMPLETED;
    372   return JPEG_SCAN_COMPLETED;
    373 }
    374 
    375 #endif /* D_MULTISCAN_FILES_SUPPORTED */
    376 
    377 
    378 #ifdef BLOCK_SMOOTHING_SUPPORTED
    379 
    380 /*
    381  * This code applies interblock smoothing as described by section K.8
    382  * of the JPEG standard: the first 5 AC coefficients are estimated from
    383  * the DC values of a DCT block and its 8 neighboring blocks.
    384  * We apply smoothing only for progressive JPEG decoding, and only if
    385  * the coefficients it can estimate are not yet known to full precision.
    386  */
    387 
    388 /*
    389  * Determine whether block smoothing is applicable and safe.
    390  * We also latch the current states of the coef_bits[] entries for the
    391  * AC coefficients; otherwise, if the input side of the decompressor
    392  * advances into a new scan, we might think the coefficients are known
    393  * more accurately than they really are.
    394  */
    395 
    396 LOCAL boolean
    397 smoothing_ok (j_decompress_ptr cinfo)
    398 {
    399   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    400   boolean smoothing_useful = FALSE;
    401   int ci, coefi;
    402   jpeg_component_info *compptr;
    403   JQUANT_TBL * qtable;
    404   int * coef_bits;
    405   int * coef_bits_latch;
    406 
    407   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
    408     return FALSE;
    409 
    410   /* Allocate latch area if not already done */
    411   if (coef->coef_bits_latch == NULL)
    412     coef->coef_bits_latch = (int *)
    413       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    414 				  cinfo->num_components *
    415 				  (SAVED_COEFS * SIZEOF(int)));
    416   coef_bits_latch = coef->coef_bits_latch;
    417 
    418   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    419        ci++, compptr++) {
    420     /* All components' quantization values must already be latched. */
    421     if ((qtable = compptr->quant_table) == NULL)
    422       return FALSE;
    423     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
    424     for (coefi = 0; coefi <= 5; coefi++) {
    425       if (qtable->quantval[coefi] == 0)
    426 	return FALSE;
    427     }
    428     /* DC values must be at least partly known for all components. */
    429     coef_bits = cinfo->coef_bits[ci];
    430     if (coef_bits[0] < 0)
    431       return FALSE;
    432     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
    433     for (coefi = 1; coefi <= 5; coefi++) {
    434       coef_bits_latch[coefi] = coef_bits[coefi];
    435       if (coef_bits[coefi] != 0)
    436 	smoothing_useful = TRUE;
    437     }
    438     coef_bits_latch += SAVED_COEFS;
    439   }
    440 
    441   return smoothing_useful;
    442 }
    443 
    444 
    445 /*
    446  * Variant of decompress_data for use when doing block smoothing.
    447  */
    448 
    449 METHODDEF int
    450 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    451 {
    452   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    453   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    454   JDIMENSION block_num, last_block_column;
    455   int ci, block_row, block_rows, access_rows;
    456   JBLOCKARRAY buffer;
    457   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
    458   JSAMPARRAY output_ptr;
    459   JDIMENSION output_col;
    460   jpeg_component_info *compptr;
    461   inverse_DCT_method_ptr inverse_DCT;
    462   boolean first_row, last_row;
    463   JBLOCK workspace;
    464   int *coef_bits;
    465   JQUANT_TBL *quanttbl;
    466   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
    467   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
    468   int Al, pred;
    469 
    470   /* Force some input to be done if we are getting ahead of the input. */
    471   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
    472 	 ! cinfo->inputctl->eoi_reached) {
    473     if (cinfo->input_scan_number == cinfo->output_scan_number) {
    474       /* If input is working on current scan, we ordinarily want it to
    475        * have completed the current row.  But if input scan is DC,
    476        * we want it to keep one row ahead so that next block row's DC
    477        * values are up to date.
    478        */
    479       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
    480       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
    481 	break;
    482     }
    483     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
    484       return JPEG_SUSPENDED;
    485   }
    486 
    487   /* OK, output from the virtual arrays. */
    488   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    489        ci++, compptr++) {
    490     /* Don't bother to IDCT an uninteresting component. */
    491     if (! compptr->component_needed)
    492       continue;
    493     /* Count non-dummy DCT block rows in this iMCU row. */
    494     if (cinfo->output_iMCU_row < last_iMCU_row) {
    495       block_rows = compptr->v_samp_factor;
    496       access_rows = block_rows * 2; /* this and next iMCU row */
    497       last_row = FALSE;
    498     } else {
    499       /* NB: can't use last_row_height here; it is input-side-dependent! */
    500       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    501       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    502       access_rows = block_rows; /* this iMCU row only */
    503       last_row = TRUE;
    504     }
    505     /* Align the virtual buffer for this component. */
    506     if (cinfo->output_iMCU_row > 0) {
    507       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
    508       buffer = (*cinfo->mem->access_virt_barray)
    509 	((j_common_ptr) cinfo, coef->whole_image[ci],
    510 	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
    511 	 (JDIMENSION) access_rows, FALSE);
    512       buffer += compptr->v_samp_factor;	/* point to current iMCU row */
    513       first_row = FALSE;
    514     } else {
    515       buffer = (*cinfo->mem->access_virt_barray)
    516 	((j_common_ptr) cinfo, coef->whole_image[ci],
    517 	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
    518       first_row = TRUE;
    519     }
    520     /* Fetch component-dependent info */
    521     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
    522     quanttbl = compptr->quant_table;
    523     Q00 = quanttbl->quantval[0];
    524     Q01 = quanttbl->quantval[1];
    525     Q10 = quanttbl->quantval[2];
    526     Q20 = quanttbl->quantval[3];
    527     Q11 = quanttbl->quantval[4];
    528     Q02 = quanttbl->quantval[5];
    529     inverse_DCT = cinfo->idct->inverse_DCT[ci];
    530     output_ptr = output_buf[ci];
    531     /* Loop over all DCT blocks to be processed. */
    532     for (block_row = 0; block_row < block_rows; block_row++) {
    533       buffer_ptr = buffer[block_row];
    534       if (first_row && block_row == 0)
    535 	prev_block_row = buffer_ptr;
    536       else
    537 	prev_block_row = buffer[block_row-1];
    538       if (last_row && block_row == block_rows-1)
    539 	next_block_row = buffer_ptr;
    540       else
    541 	next_block_row = buffer[block_row+1];
    542       /* We fetch the surrounding DC values using a sliding-register approach.
    543        * Initialize all nine here so as to do the right thing on narrow pics.
    544        */
    545       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
    546       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
    547       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
    548       output_col = 0;
    549       last_block_column = compptr->width_in_blocks - 1;
    550       for (block_num = 0; block_num <= last_block_column; block_num++) {
    551 	/* Fetch current DCT block into workspace so we can modify it. */
    552 	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
    553 	/* Update DC values */
    554 	if (block_num < last_block_column) {
    555 	  DC3 = (int) prev_block_row[1][0];
    556 	  DC6 = (int) buffer_ptr[1][0];
    557 	  DC9 = (int) next_block_row[1][0];
    558 	}
    559 	/* Compute coefficient estimates per K.8.
    560 	 * An estimate is applied only if coefficient is still zero,
    561 	 * and is not known to be fully accurate.
    562 	 */
    563 	/* AC01 */
    564 	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
    565 	  num = 36 * Q00 * (DC4 - DC6);
    566 	  if (num >= 0) {
    567 	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
    568 	    if (Al > 0 && pred >= (1<<Al))
    569 	      pred = (1<<Al)-1;
    570 	  } else {
    571 	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
    572 	    if (Al > 0 && pred >= (1<<Al))
    573 	      pred = (1<<Al)-1;
    574 	    pred = -pred;
    575 	  }
    576 	  workspace[1] = (JCOEF) pred;
    577 	}
    578 	/* AC10 */
    579 	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
    580 	  num = 36 * Q00 * (DC2 - DC8);
    581 	  if (num >= 0) {
    582 	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
    583 	    if (Al > 0 && pred >= (1<<Al))
    584 	      pred = (1<<Al)-1;
    585 	  } else {
    586 	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
    587 	    if (Al > 0 && pred >= (1<<Al))
    588 	      pred = (1<<Al)-1;
    589 	    pred = -pred;
    590 	  }
    591 	  workspace[8] = (JCOEF) pred;
    592 	}
    593 	/* AC20 */
    594 	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
    595 	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
    596 	  if (num >= 0) {
    597 	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
    598 	    if (Al > 0 && pred >= (1<<Al))
    599 	      pred = (1<<Al)-1;
    600 	  } else {
    601 	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
    602 	    if (Al > 0 && pred >= (1<<Al))
    603 	      pred = (1<<Al)-1;
    604 	    pred = -pred;
    605 	  }
    606 	  workspace[16] = (JCOEF) pred;
    607 	}
    608 	/* AC11 */
    609 	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
    610 	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
    611 	  if (num >= 0) {
    612 	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
    613 	    if (Al > 0 && pred >= (1<<Al))
    614 	      pred = (1<<Al)-1;
    615 	  } else {
    616 	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
    617 	    if (Al > 0 && pred >= (1<<Al))
    618 	      pred = (1<<Al)-1;
    619 	    pred = -pred;
    620 	  }
    621 	  workspace[9] = (JCOEF) pred;
    622 	}
    623 	/* AC02 */
    624 	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
    625 	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
    626 	  if (num >= 0) {
    627 	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
    628 	    if (Al > 0 && pred >= (1<<Al))
    629 	      pred = (1<<Al)-1;
    630 	  } else {
    631 	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
    632 	    if (Al > 0 && pred >= (1<<Al))
    633 	      pred = (1<<Al)-1;
    634 	    pred = -pred;
    635 	  }
    636 	  workspace[2] = (JCOEF) pred;
    637 	}
    638 	/* OK, do the IDCT */
    639 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
    640 			output_ptr, output_col);
    641 	/* Advance for next column */
    642 	DC1 = DC2; DC2 = DC3;
    643 	DC4 = DC5; DC5 = DC6;
    644 	DC7 = DC8; DC8 = DC9;
    645 	buffer_ptr++, prev_block_row++, next_block_row++;
    646 	output_col += compptr->DCT_scaled_size;
    647       }
    648       output_ptr += compptr->DCT_scaled_size;
    649     }
    650   }
    651 
    652   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    653     return JPEG_ROW_COMPLETED;
    654   return JPEG_SCAN_COMPLETED;
    655 }
    656 
    657 #endif /* BLOCK_SMOOTHING_SUPPORTED */
    658 
    659 
    660 /*
    661  * Initialize coefficient buffer controller.
    662  */
    663 
    664 GLOBAL void
    665 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
    666 {
    667   my_coef_ptr coef;
    668 
    669   coef = (my_coef_ptr)
    670     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    671 				SIZEOF(my_coef_controller));
    672   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
    673   coef->pub.start_input_pass = start_input_pass;
    674   coef->pub.start_output_pass = start_output_pass;
    675 #ifdef BLOCK_SMOOTHING_SUPPORTED
    676   coef->coef_bits_latch = NULL;
    677 #endif
    678 
    679   /* Create the coefficient buffer. */
    680   if (need_full_buffer) {
    681 #ifdef D_MULTISCAN_FILES_SUPPORTED
    682     /* Allocate a full-image virtual array for each component, */
    683     /* padded to a multiple of samp_factor DCT blocks in each direction. */
    684     /* Note we ask for a pre-zeroed array. */
    685     int ci, access_rows;
    686     jpeg_component_info *compptr;
    687 
    688     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    689 	 ci++, compptr++) {
    690       access_rows = compptr->v_samp_factor;
    691 #ifdef BLOCK_SMOOTHING_SUPPORTED
    692       /* If block smoothing could be used, need a bigger window */
    693       if (cinfo->progressive_mode)
    694 	access_rows *= 3;
    695 #endif
    696       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    697 	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
    698 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    699 				(long) compptr->h_samp_factor),
    700 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
    701 				(long) compptr->v_samp_factor),
    702 	 (JDIMENSION) access_rows);
    703     }
    704     coef->pub.consume_data = consume_data;
    705     coef->pub.decompress_data = decompress_data;
    706     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
    707 #else
    708     ERREXIT(cinfo, JERR_NOT_COMPILED);
    709 #endif
    710   } else {
    711     /* We only need a single-MCU buffer. */
    712     JBLOCKROW buffer;
    713     int i;
    714 
    715     buffer = (JBLOCKROW)
    716       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    717 				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
    718     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
    719       coef->MCU_buffer[i] = buffer + i;
    720     }
    721     coef->pub.consume_data = dummy_consume_data;
    722     coef->pub.decompress_data = decompress_onepass;
    723     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
    724   }
    725 }