lmathlib.c (19312B)
1 /* 2 ** $Id: lmathlib.c $ 3 ** Standard mathematical library 4 ** See Copyright Notice in lua.h 5 */ 6 7 #define lmathlib_c 8 #define LUA_LIB 9 10 #include "lprefix.h" 11 12 13 #include <float.h> 14 #include <limits.h> 15 #include <math.h> 16 #include <stdlib.h> 17 #include <time.h> 18 19 #include "lua.h" 20 21 #include "lauxlib.h" 22 #include "lualib.h" 23 #include "llimits.h" 24 25 26 #undef PI 27 #define PI (l_mathop(3.141592653589793238462643383279502884)) 28 29 30 static int math_abs (lua_State *L) { 31 if (lua_isinteger(L, 1)) { 32 lua_Integer n = lua_tointeger(L, 1); 33 if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n); 34 lua_pushinteger(L, n); 35 } 36 else 37 lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1))); 38 return 1; 39 } 40 41 static int math_sin (lua_State *L) { 42 lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1))); 43 return 1; 44 } 45 46 static int math_cos (lua_State *L) { 47 lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1))); 48 return 1; 49 } 50 51 static int math_tan (lua_State *L) { 52 lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1))); 53 return 1; 54 } 55 56 static int math_asin (lua_State *L) { 57 lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1))); 58 return 1; 59 } 60 61 static int math_acos (lua_State *L) { 62 lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1))); 63 return 1; 64 } 65 66 static int math_atan (lua_State *L) { 67 lua_Number y = luaL_checknumber(L, 1); 68 lua_Number x = luaL_optnumber(L, 2, 1); 69 lua_pushnumber(L, l_mathop(atan2)(y, x)); 70 return 1; 71 } 72 73 74 static int math_toint (lua_State *L) { 75 int valid; 76 lua_Integer n = lua_tointegerx(L, 1, &valid); 77 if (l_likely(valid)) 78 lua_pushinteger(L, n); 79 else { 80 luaL_checkany(L, 1); 81 luaL_pushfail(L); /* value is not convertible to integer */ 82 } 83 return 1; 84 } 85 86 87 static void pushnumint (lua_State *L, lua_Number d) { 88 lua_Integer n; 89 if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */ 90 lua_pushinteger(L, n); /* result is integer */ 91 else 92 lua_pushnumber(L, d); /* result is float */ 93 } 94 95 96 static int math_floor (lua_State *L) { 97 if (lua_isinteger(L, 1)) 98 lua_settop(L, 1); /* integer is its own floor */ 99 else { 100 lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1)); 101 pushnumint(L, d); 102 } 103 return 1; 104 } 105 106 107 static int math_ceil (lua_State *L) { 108 if (lua_isinteger(L, 1)) 109 lua_settop(L, 1); /* integer is its own ceiling */ 110 else { 111 lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1)); 112 pushnumint(L, d); 113 } 114 return 1; 115 } 116 117 118 static int math_fmod (lua_State *L) { 119 if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) { 120 lua_Integer d = lua_tointeger(L, 2); 121 if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */ 122 luaL_argcheck(L, d != 0, 2, "zero"); 123 lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */ 124 } 125 else 126 lua_pushinteger(L, lua_tointeger(L, 1) % d); 127 } 128 else 129 lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1), 130 luaL_checknumber(L, 2))); 131 return 1; 132 } 133 134 135 /* 136 ** next function does not use 'modf', avoiding problems with 'double*' 137 ** (which is not compatible with 'float*') when lua_Number is not 138 ** 'double'. 139 */ 140 static int math_modf (lua_State *L) { 141 if (lua_isinteger(L ,1)) { 142 lua_settop(L, 1); /* number is its own integer part */ 143 lua_pushnumber(L, 0); /* no fractional part */ 144 } 145 else { 146 lua_Number n = luaL_checknumber(L, 1); 147 /* integer part (rounds toward zero) */ 148 lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n); 149 pushnumint(L, ip); 150 /* fractional part (test needed for inf/-inf) */ 151 lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip)); 152 } 153 return 2; 154 } 155 156 157 static int math_sqrt (lua_State *L) { 158 lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1))); 159 return 1; 160 } 161 162 163 static int math_ult (lua_State *L) { 164 lua_Integer a = luaL_checkinteger(L, 1); 165 lua_Integer b = luaL_checkinteger(L, 2); 166 lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b); 167 return 1; 168 } 169 170 static int math_log (lua_State *L) { 171 lua_Number x = luaL_checknumber(L, 1); 172 lua_Number res; 173 if (lua_isnoneornil(L, 2)) 174 res = l_mathop(log)(x); 175 else { 176 lua_Number base = luaL_checknumber(L, 2); 177 #if !defined(LUA_USE_C89) 178 if (base == l_mathop(2.0)) 179 res = l_mathop(log2)(x); 180 else 181 #endif 182 if (base == l_mathop(10.0)) 183 res = l_mathop(log10)(x); 184 else 185 res = l_mathop(log)(x)/l_mathop(log)(base); 186 } 187 lua_pushnumber(L, res); 188 return 1; 189 } 190 191 static int math_exp (lua_State *L) { 192 lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1))); 193 return 1; 194 } 195 196 static int math_deg (lua_State *L) { 197 lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI)); 198 return 1; 199 } 200 201 static int math_rad (lua_State *L) { 202 lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0))); 203 return 1; 204 } 205 206 207 static int math_min (lua_State *L) { 208 int n = lua_gettop(L); /* number of arguments */ 209 int imin = 1; /* index of current minimum value */ 210 int i; 211 luaL_argcheck(L, n >= 1, 1, "value expected"); 212 for (i = 2; i <= n; i++) { 213 if (lua_compare(L, i, imin, LUA_OPLT)) 214 imin = i; 215 } 216 lua_pushvalue(L, imin); 217 return 1; 218 } 219 220 221 static int math_max (lua_State *L) { 222 int n = lua_gettop(L); /* number of arguments */ 223 int imax = 1; /* index of current maximum value */ 224 int i; 225 luaL_argcheck(L, n >= 1, 1, "value expected"); 226 for (i = 2; i <= n; i++) { 227 if (lua_compare(L, imax, i, LUA_OPLT)) 228 imax = i; 229 } 230 lua_pushvalue(L, imax); 231 return 1; 232 } 233 234 235 static int math_type (lua_State *L) { 236 if (lua_type(L, 1) == LUA_TNUMBER) 237 lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float"); 238 else { 239 luaL_checkany(L, 1); 240 luaL_pushfail(L); 241 } 242 return 1; 243 } 244 245 246 247 /* 248 ** {================================================================== 249 ** Pseudo-Random Number Generator based on 'xoshiro256**'. 250 ** =================================================================== 251 */ 252 253 /* 254 ** This code uses lots of shifts. ANSI C does not allow shifts greater 255 ** than or equal to the width of the type being shifted, so some shifts 256 ** are written in convoluted ways to match that restriction. For 257 ** preprocessor tests, it assumes a width of 32 bits, so the maximum 258 ** shift there is 31 bits. 259 */ 260 261 262 /* number of binary digits in the mantissa of a float */ 263 #define FIGS l_floatatt(MANT_DIG) 264 265 #if FIGS > 64 266 /* there are only 64 random bits; use them all */ 267 #undef FIGS 268 #define FIGS 64 269 #endif 270 271 272 /* 273 ** LUA_RAND32 forces the use of 32-bit integers in the implementation 274 ** of the PRN generator (mainly for testing). 275 */ 276 #if !defined(LUA_RAND32) && !defined(Rand64) 277 278 /* try to find an integer type with at least 64 bits */ 279 280 #if ((ULONG_MAX >> 31) >> 31) >= 3 281 282 /* 'long' has at least 64 bits */ 283 #define Rand64 unsigned long 284 #define SRand64 long 285 286 #elif !defined(LUA_USE_C89) && defined(LLONG_MAX) 287 288 /* there is a 'long long' type (which must have at least 64 bits) */ 289 #define Rand64 unsigned long long 290 #define SRand64 long long 291 292 #elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3 293 294 /* 'lua_Unsigned' has at least 64 bits */ 295 #define Rand64 lua_Unsigned 296 #define SRand64 lua_Integer 297 298 #endif 299 300 #endif 301 302 303 #if defined(Rand64) /* { */ 304 305 /* 306 ** Standard implementation, using 64-bit integers. 307 ** If 'Rand64' has more than 64 bits, the extra bits do not interfere 308 ** with the 64 initial bits, except in a right shift. Moreover, the 309 ** final result has to discard the extra bits. 310 */ 311 312 /* avoid using extra bits when needed */ 313 #define trim64(x) ((x) & 0xffffffffffffffffu) 314 315 316 /* rotate left 'x' by 'n' bits */ 317 static Rand64 rotl (Rand64 x, int n) { 318 return (x << n) | (trim64(x) >> (64 - n)); 319 } 320 321 static Rand64 nextrand (Rand64 *state) { 322 Rand64 state0 = state[0]; 323 Rand64 state1 = state[1]; 324 Rand64 state2 = state[2] ^ state0; 325 Rand64 state3 = state[3] ^ state1; 326 Rand64 res = rotl(state1 * 5, 7) * 9; 327 state[0] = state0 ^ state3; 328 state[1] = state1 ^ state2; 329 state[2] = state2 ^ (state1 << 17); 330 state[3] = rotl(state3, 45); 331 return res; 332 } 333 334 335 /* 336 ** Convert bits from a random integer into a float in the 337 ** interval [0,1), getting the higher FIG bits from the 338 ** random unsigned integer and converting that to a float. 339 ** Some old Microsoft compilers cannot cast an unsigned long 340 ** to a floating-point number, so we use a signed long as an 341 ** intermediary. When lua_Number is float or double, the shift ensures 342 ** that 'sx' is non negative; in that case, a good compiler will remove 343 ** the correction. 344 */ 345 346 /* must throw out the extra (64 - FIGS) bits */ 347 #define shift64_FIG (64 - FIGS) 348 349 /* 2^(-FIGS) == 2^-1 / 2^(FIGS-1) */ 350 #define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1))) 351 352 static lua_Number I2d (Rand64 x) { 353 SRand64 sx = (SRand64)(trim64(x) >> shift64_FIG); 354 lua_Number res = (lua_Number)(sx) * scaleFIG; 355 if (sx < 0) 356 res += l_mathop(1.0); /* correct the two's complement if negative */ 357 lua_assert(0 <= res && res < 1); 358 return res; 359 } 360 361 /* convert a 'Rand64' to a 'lua_Unsigned' */ 362 #define I2UInt(x) ((lua_Unsigned)trim64(x)) 363 364 /* convert a 'lua_Unsigned' to a 'Rand64' */ 365 #define Int2I(x) ((Rand64)(x)) 366 367 368 #else /* no 'Rand64' }{ */ 369 370 /* 371 ** Use two 32-bit integers to represent a 64-bit quantity. 372 */ 373 typedef struct Rand64 { 374 l_uint32 h; /* higher half */ 375 l_uint32 l; /* lower half */ 376 } Rand64; 377 378 379 /* 380 ** If 'l_uint32' has more than 32 bits, the extra bits do not interfere 381 ** with the 32 initial bits, except in a right shift and comparisons. 382 ** Moreover, the final result has to discard the extra bits. 383 */ 384 385 /* avoid using extra bits when needed */ 386 #define trim32(x) ((x) & 0xffffffffu) 387 388 389 /* 390 ** basic operations on 'Rand64' values 391 */ 392 393 /* build a new Rand64 value */ 394 static Rand64 packI (l_uint32 h, l_uint32 l) { 395 Rand64 result; 396 result.h = h; 397 result.l = l; 398 return result; 399 } 400 401 /* return i << n */ 402 static Rand64 Ishl (Rand64 i, int n) { 403 lua_assert(n > 0 && n < 32); 404 return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n); 405 } 406 407 /* i1 ^= i2 */ 408 static void Ixor (Rand64 *i1, Rand64 i2) { 409 i1->h ^= i2.h; 410 i1->l ^= i2.l; 411 } 412 413 /* return i1 + i2 */ 414 static Rand64 Iadd (Rand64 i1, Rand64 i2) { 415 Rand64 result = packI(i1.h + i2.h, i1.l + i2.l); 416 if (trim32(result.l) < trim32(i1.l)) /* carry? */ 417 result.h++; 418 return result; 419 } 420 421 /* return i * 5 */ 422 static Rand64 times5 (Rand64 i) { 423 return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */ 424 } 425 426 /* return i * 9 */ 427 static Rand64 times9 (Rand64 i) { 428 return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */ 429 } 430 431 /* return 'i' rotated left 'n' bits */ 432 static Rand64 rotl (Rand64 i, int n) { 433 lua_assert(n > 0 && n < 32); 434 return packI((i.h << n) | (trim32(i.l) >> (32 - n)), 435 (trim32(i.h) >> (32 - n)) | (i.l << n)); 436 } 437 438 /* for offsets larger than 32, rotate right by 64 - offset */ 439 static Rand64 rotl1 (Rand64 i, int n) { 440 lua_assert(n > 32 && n < 64); 441 n = 64 - n; 442 return packI((trim32(i.h) >> n) | (i.l << (32 - n)), 443 (i.h << (32 - n)) | (trim32(i.l) >> n)); 444 } 445 446 /* 447 ** implementation of 'xoshiro256**' algorithm on 'Rand64' values 448 */ 449 static Rand64 nextrand (Rand64 *state) { 450 Rand64 res = times9(rotl(times5(state[1]), 7)); 451 Rand64 t = Ishl(state[1], 17); 452 Ixor(&state[2], state[0]); 453 Ixor(&state[3], state[1]); 454 Ixor(&state[1], state[2]); 455 Ixor(&state[0], state[3]); 456 Ixor(&state[2], t); 457 state[3] = rotl1(state[3], 45); 458 return res; 459 } 460 461 462 /* 463 ** Converts a 'Rand64' into a float. 464 */ 465 466 /* an unsigned 1 with proper type */ 467 #define UONE ((l_uint32)1) 468 469 470 #if FIGS <= 32 471 472 /* 2^(-FIGS) */ 473 #define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1))) 474 475 /* 476 ** get up to 32 bits from higher half, shifting right to 477 ** throw out the extra bits. 478 */ 479 static lua_Number I2d (Rand64 x) { 480 lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS)); 481 return h * scaleFIG; 482 } 483 484 #else /* 32 < FIGS <= 64 */ 485 486 /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */ 487 #define scaleFIG \ 488 (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33))) 489 490 /* 491 ** use FIGS - 32 bits from lower half, throwing out the other 492 ** (32 - (FIGS - 32)) = (64 - FIGS) bits 493 */ 494 #define shiftLOW (64 - FIGS) 495 496 /* 497 ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32) 498 */ 499 #define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0)) 500 501 502 static lua_Number I2d (Rand64 x) { 503 lua_Number h = (lua_Number)trim32(x.h) * shiftHI; 504 lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW); 505 return (h + l) * scaleFIG; 506 } 507 508 #endif 509 510 511 /* convert a 'Rand64' to a 'lua_Unsigned' */ 512 static lua_Unsigned I2UInt (Rand64 x) { 513 return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l); 514 } 515 516 /* convert a 'lua_Unsigned' to a 'Rand64' */ 517 static Rand64 Int2I (lua_Unsigned n) { 518 return packI((l_uint32)((n >> 31) >> 1), (l_uint32)n); 519 } 520 521 #endif /* } */ 522 523 524 /* 525 ** A state uses four 'Rand64' values. 526 */ 527 typedef struct { 528 Rand64 s[4]; 529 } RanState; 530 531 532 /* 533 ** Project the random integer 'ran' into the interval [0, n]. 534 ** Because 'ran' has 2^B possible values, the projection can only be 535 ** uniform when the size of the interval is a power of 2 (exact 536 ** division). Otherwise, to get a uniform projection into [0, n], we 537 ** first compute 'lim', the smallest Mersenne number not smaller than 538 ** 'n'. We then project 'ran' into the interval [0, lim]. If the result 539 ** is inside [0, n], we are done. Otherwise, we try with another 'ran', 540 ** until we have a result inside the interval. 541 */ 542 static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n, 543 RanState *state) { 544 if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */ 545 return ran & n; /* no bias */ 546 else { 547 lua_Unsigned lim = n; 548 /* compute the smallest (2^b - 1) not smaller than 'n' */ 549 lim |= (lim >> 1); 550 lim |= (lim >> 2); 551 lim |= (lim >> 4); 552 lim |= (lim >> 8); 553 lim |= (lim >> 16); 554 #if (LUA_MAXUNSIGNED >> 31) >= 3 555 lim |= (lim >> 32); /* integer type has more than 32 bits */ 556 #endif 557 lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */ 558 && lim >= n /* not smaller than 'n', */ 559 && (lim >> 1) < n); /* and it is the smallest one */ 560 while ((ran &= lim) > n) /* project 'ran' into [0..lim] */ 561 ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */ 562 return ran; 563 } 564 } 565 566 567 static int math_random (lua_State *L) { 568 lua_Integer low, up; 569 lua_Unsigned p; 570 RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); 571 Rand64 rv = nextrand(state->s); /* next pseudo-random value */ 572 switch (lua_gettop(L)) { /* check number of arguments */ 573 case 0: { /* no arguments */ 574 lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */ 575 return 1; 576 } 577 case 1: { /* only upper limit */ 578 low = 1; 579 up = luaL_checkinteger(L, 1); 580 if (up == 0) { /* single 0 as argument? */ 581 lua_pushinteger(L, l_castU2S(I2UInt(rv))); /* full random integer */ 582 return 1; 583 } 584 break; 585 } 586 case 2: { /* lower and upper limits */ 587 low = luaL_checkinteger(L, 1); 588 up = luaL_checkinteger(L, 2); 589 break; 590 } 591 default: return luaL_error(L, "wrong number of arguments"); 592 } 593 /* random integer in the interval [low, up] */ 594 luaL_argcheck(L, low <= up, 1, "interval is empty"); 595 /* project random integer into the interval [0, up - low] */ 596 p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state); 597 lua_pushinteger(L, l_castU2S(p) + low); 598 return 1; 599 } 600 601 602 static void setseed (lua_State *L, Rand64 *state, 603 lua_Unsigned n1, lua_Unsigned n2) { 604 int i; 605 state[0] = Int2I(n1); 606 state[1] = Int2I(0xff); /* avoid a zero state */ 607 state[2] = Int2I(n2); 608 state[3] = Int2I(0); 609 for (i = 0; i < 16; i++) 610 nextrand(state); /* discard initial values to "spread" seed */ 611 lua_pushinteger(L, l_castU2S(n1)); 612 lua_pushinteger(L, l_castU2S(n2)); 613 } 614 615 616 static int math_randomseed (lua_State *L) { 617 RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); 618 lua_Unsigned n1, n2; 619 if (lua_isnone(L, 1)) { 620 n1 = luaL_makeseed(L); /* "random" seed */ 621 n2 = I2UInt(nextrand(state->s)); /* in case seed is not that random... */ 622 } 623 else { 624 n1 = l_castS2U(luaL_checkinteger(L, 1)); 625 n2 = l_castS2U(luaL_optinteger(L, 2, 0)); 626 } 627 setseed(L, state->s, n1, n2); 628 return 2; /* return seeds */ 629 } 630 631 632 static const luaL_Reg randfuncs[] = { 633 {"random", math_random}, 634 {"randomseed", math_randomseed}, 635 {NULL, NULL} 636 }; 637 638 639 /* 640 ** Register the random functions and initialize their state. 641 */ 642 static void setrandfunc (lua_State *L) { 643 RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0); 644 setseed(L, state->s, luaL_makeseed(L), 0); /* initialize with random seed */ 645 lua_pop(L, 2); /* remove pushed seeds */ 646 luaL_setfuncs(L, randfuncs, 1); 647 } 648 649 /* }================================================================== */ 650 651 652 /* 653 ** {================================================================== 654 ** Deprecated functions (for compatibility only) 655 ** =================================================================== 656 */ 657 #if defined(LUA_COMPAT_MATHLIB) 658 659 static int math_cosh (lua_State *L) { 660 lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1))); 661 return 1; 662 } 663 664 static int math_sinh (lua_State *L) { 665 lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1))); 666 return 1; 667 } 668 669 static int math_tanh (lua_State *L) { 670 lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1))); 671 return 1; 672 } 673 674 static int math_pow (lua_State *L) { 675 lua_Number x = luaL_checknumber(L, 1); 676 lua_Number y = luaL_checknumber(L, 2); 677 lua_pushnumber(L, l_mathop(pow)(x, y)); 678 return 1; 679 } 680 681 static int math_frexp (lua_State *L) { 682 int e; 683 lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e)); 684 lua_pushinteger(L, e); 685 return 2; 686 } 687 688 static int math_ldexp (lua_State *L) { 689 lua_Number x = luaL_checknumber(L, 1); 690 int ep = (int)luaL_checkinteger(L, 2); 691 lua_pushnumber(L, l_mathop(ldexp)(x, ep)); 692 return 1; 693 } 694 695 static int math_log10 (lua_State *L) { 696 lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1))); 697 return 1; 698 } 699 700 #endif 701 /* }================================================================== */ 702 703 704 705 static const luaL_Reg mathlib[] = { 706 {"abs", math_abs}, 707 {"acos", math_acos}, 708 {"asin", math_asin}, 709 {"atan", math_atan}, 710 {"ceil", math_ceil}, 711 {"cos", math_cos}, 712 {"deg", math_deg}, 713 {"exp", math_exp}, 714 {"tointeger", math_toint}, 715 {"floor", math_floor}, 716 {"fmod", math_fmod}, 717 {"ult", math_ult}, 718 {"log", math_log}, 719 {"max", math_max}, 720 {"min", math_min}, 721 {"modf", math_modf}, 722 {"rad", math_rad}, 723 {"sin", math_sin}, 724 {"sqrt", math_sqrt}, 725 {"tan", math_tan}, 726 {"type", math_type}, 727 #if defined(LUA_COMPAT_MATHLIB) 728 {"atan2", math_atan}, 729 {"cosh", math_cosh}, 730 {"sinh", math_sinh}, 731 {"tanh", math_tanh}, 732 {"pow", math_pow}, 733 {"frexp", math_frexp}, 734 {"ldexp", math_ldexp}, 735 {"log10", math_log10}, 736 #endif 737 /* placeholders */ 738 {"random", NULL}, 739 {"randomseed", NULL}, 740 {"pi", NULL}, 741 {"huge", NULL}, 742 {"maxinteger", NULL}, 743 {"mininteger", NULL}, 744 {NULL, NULL} 745 }; 746 747 748 /* 749 ** Open math library 750 */ 751 LUAMOD_API int luaopen_math (lua_State *L) { 752 luaL_newlib(L, mathlib); 753 lua_pushnumber(L, PI); 754 lua_setfield(L, -2, "pi"); 755 lua_pushnumber(L, (lua_Number)HUGE_VAL); 756 lua_setfield(L, -2, "huge"); 757 lua_pushinteger(L, LUA_MAXINTEGER); 758 lua_setfield(L, -2, "maxinteger"); 759 lua_pushinteger(L, LUA_MININTEGER); 760 lua_setfield(L, -2, "mininteger"); 761 setrandfunc(L); 762 return 1; 763 } 764