lopcodes.h (13973B)
1 /* 2 ** $Id: lopcodes.h $ 3 ** Opcodes for Lua virtual machine 4 ** See Copyright Notice in lua.h 5 */ 6 7 #ifndef lopcodes_h 8 #define lopcodes_h 9 10 #include "llimits.h" 11 #include "lobject.h" 12 13 14 /*=========================================================================== 15 We assume that instructions are unsigned 32-bit integers. 16 All instructions have an opcode in the first 7 bits. 17 Instructions can have the following formats: 18 19 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 20 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 21 iABC C(8) | B(8) |k| A(8) | Op(7) | 22 ivABC vC(10) | vB(6) |k| A(8) | Op(7) | 23 iABx Bx(17) | A(8) | Op(7) | 24 iAsBx sBx (signed)(17) | A(8) | Op(7) | 25 iAx Ax(25) | Op(7) | 26 isJ sJ (signed)(25) | Op(7) | 27 28 ('v' stands for "variant", 's' for "signed", 'x' for "extended".) 29 A signed argument is represented in excess K: The represented value is 30 the written unsigned value minus K, where K is half (rounded down) the 31 maximum value for the corresponding unsigned argument. 32 ===========================================================================*/ 33 34 35 /* basic instruction formats */ 36 enum OpMode {iABC, ivABC, iABx, iAsBx, iAx, isJ}; 37 38 39 /* 40 ** size and position of opcode arguments. 41 */ 42 #define SIZE_C 8 43 #define SIZE_vC 10 44 #define SIZE_B 8 45 #define SIZE_vB 6 46 #define SIZE_Bx (SIZE_C + SIZE_B + 1) 47 #define SIZE_A 8 48 #define SIZE_Ax (SIZE_Bx + SIZE_A) 49 #define SIZE_sJ (SIZE_Bx + SIZE_A) 50 51 #define SIZE_OP 7 52 53 #define POS_OP 0 54 55 #define POS_A (POS_OP + SIZE_OP) 56 #define POS_k (POS_A + SIZE_A) 57 #define POS_B (POS_k + 1) 58 #define POS_vB (POS_k + 1) 59 #define POS_C (POS_B + SIZE_B) 60 #define POS_vC (POS_vB + SIZE_vB) 61 62 #define POS_Bx POS_k 63 64 #define POS_Ax POS_A 65 66 #define POS_sJ POS_A 67 68 69 /* 70 ** limits for opcode arguments. 71 ** we use (signed) 'int' to manipulate most arguments, 72 ** so they must fit in ints. 73 */ 74 75 /* 76 ** Check whether type 'int' has at least 'b' + 1 bits. 77 ** 'b' < 32; +1 for the sign bit. 78 */ 79 #define L_INTHASBITS(b) ((UINT_MAX >> (b)) >= 1) 80 81 82 #if L_INTHASBITS(SIZE_Bx) 83 #define MAXARG_Bx ((1<<SIZE_Bx)-1) 84 #else 85 #define MAXARG_Bx INT_MAX 86 #endif 87 88 #define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ 89 90 91 #if L_INTHASBITS(SIZE_Ax) 92 #define MAXARG_Ax ((1<<SIZE_Ax)-1) 93 #else 94 #define MAXARG_Ax INT_MAX 95 #endif 96 97 #if L_INTHASBITS(SIZE_sJ) 98 #define MAXARG_sJ ((1 << SIZE_sJ) - 1) 99 #else 100 #define MAXARG_sJ INT_MAX 101 #endif 102 103 #define OFFSET_sJ (MAXARG_sJ >> 1) 104 105 106 #define MAXARG_A ((1<<SIZE_A)-1) 107 #define MAXARG_B ((1<<SIZE_B)-1) 108 #define MAXARG_vB ((1<<SIZE_vB)-1) 109 #define MAXARG_C ((1<<SIZE_C)-1) 110 #define MAXARG_vC ((1<<SIZE_vC)-1) 111 #define OFFSET_sC (MAXARG_C >> 1) 112 113 #define int2sC(i) ((i) + OFFSET_sC) 114 #define sC2int(i) ((i) - OFFSET_sC) 115 116 117 /* creates a mask with 'n' 1 bits at position 'p' */ 118 #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) 119 120 /* creates a mask with 'n' 0 bits at position 'p' */ 121 #define MASK0(n,p) (~MASK1(n,p)) 122 123 /* 124 ** the following macros help to manipulate instructions 125 */ 126 127 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) 128 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ 129 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) 130 131 #define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m) 132 133 134 #define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0))) 135 #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ 136 ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) 137 138 #define GETARG_A(i) getarg(i, POS_A, SIZE_A) 139 #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) 140 141 #define GETARG_B(i) \ 142 check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B)) 143 #define GETARG_vB(i) \ 144 check_exp(checkopm(i, ivABC), getarg(i, POS_vB, SIZE_vB)) 145 #define GETARG_sB(i) sC2int(GETARG_B(i)) 146 #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) 147 #define SETARG_vB(i,v) setarg(i, v, POS_vB, SIZE_vB) 148 149 #define GETARG_C(i) \ 150 check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C)) 151 #define GETARG_vC(i) \ 152 check_exp(checkopm(i, ivABC), getarg(i, POS_vC, SIZE_vC)) 153 #define GETARG_sC(i) sC2int(GETARG_C(i)) 154 #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) 155 #define SETARG_vC(i,v) setarg(i, v, POS_vC, SIZE_vC) 156 157 #define TESTARG_k(i) (cast_int(((i) & (1u << POS_k)))) 158 #define GETARG_k(i) getarg(i, POS_k, 1) 159 #define SETARG_k(i,v) setarg(i, v, POS_k, 1) 160 161 #define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx)) 162 #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) 163 164 #define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax)) 165 #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) 166 167 #define GETARG_sBx(i) \ 168 check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx) 169 #define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx)) 170 171 #define GETARG_sJ(i) \ 172 check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ) 173 #define SETARG_sJ(i,j) \ 174 setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ) 175 176 177 #define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \ 178 | (cast(Instruction, a)<<POS_A) \ 179 | (cast(Instruction, b)<<POS_B) \ 180 | (cast(Instruction, c)<<POS_C) \ 181 | (cast(Instruction, k)<<POS_k)) 182 183 #define CREATE_vABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \ 184 | (cast(Instruction, a)<<POS_A) \ 185 | (cast(Instruction, b)<<POS_vB) \ 186 | (cast(Instruction, c)<<POS_vC) \ 187 | (cast(Instruction, k)<<POS_k)) 188 189 #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ 190 | (cast(Instruction, a)<<POS_A) \ 191 | (cast(Instruction, bc)<<POS_Bx)) 192 193 #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ 194 | (cast(Instruction, a)<<POS_Ax)) 195 196 #define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \ 197 | (cast(Instruction, j) << POS_sJ) \ 198 | (cast(Instruction, k) << POS_k)) 199 200 201 #if !defined(MAXINDEXRK) /* (for debugging only) */ 202 #define MAXINDEXRK MAXARG_B 203 #endif 204 205 206 /* 207 ** Maximum size for the stack of a Lua function. It must fit in 8 bits. 208 ** The highest valid register is one less than this value. 209 */ 210 #define MAX_FSTACK MAXARG_A 211 212 /* 213 ** Invalid register (one more than last valid register). 214 */ 215 #define NO_REG MAX_FSTACK 216 217 218 219 /* 220 ** R[x] - register 221 ** K[x] - constant (in constant table) 222 ** RK(x) == if k(i) then K[x] else R[x] 223 */ 224 225 226 /* 227 ** Grep "ORDER OP" if you change these enums. Opcodes marked with a (*) 228 ** has extra descriptions in the notes after the enumeration. 229 */ 230 231 typedef enum { 232 /*---------------------------------------------------------------------- 233 name args description 234 ------------------------------------------------------------------------*/ 235 OP_MOVE,/* A B R[A] := R[B] */ 236 OP_LOADI,/* A sBx R[A] := sBx */ 237 OP_LOADF,/* A sBx R[A] := (lua_Number)sBx */ 238 OP_LOADK,/* A Bx R[A] := K[Bx] */ 239 OP_LOADKX,/* A R[A] := K[extra arg] */ 240 OP_LOADFALSE,/* A R[A] := false */ 241 OP_LFALSESKIP,/*A R[A] := false; pc++ (*) */ 242 OP_LOADTRUE,/* A R[A] := true */ 243 OP_LOADNIL,/* A B R[A], R[A+1], ..., R[A+B] := nil */ 244 OP_GETUPVAL,/* A B R[A] := UpValue[B] */ 245 OP_SETUPVAL,/* A B UpValue[B] := R[A] */ 246 247 OP_GETTABUP,/* A B C R[A] := UpValue[B][K[C]:shortstring] */ 248 OP_GETTABLE,/* A B C R[A] := R[B][R[C]] */ 249 OP_GETI,/* A B C R[A] := R[B][C] */ 250 OP_GETFIELD,/* A B C R[A] := R[B][K[C]:shortstring] */ 251 252 OP_SETTABUP,/* A B C UpValue[A][K[B]:shortstring] := RK(C) */ 253 OP_SETTABLE,/* A B C R[A][R[B]] := RK(C) */ 254 OP_SETI,/* A B C R[A][B] := RK(C) */ 255 OP_SETFIELD,/* A B C R[A][K[B]:shortstring] := RK(C) */ 256 257 OP_NEWTABLE,/* A B C k R[A] := {} */ 258 259 OP_SELF,/* A B C R[A+1] := R[B]; R[A] := R[B][K[C]:shortstring] */ 260 261 OP_ADDI,/* A B sC R[A] := R[B] + sC */ 262 263 OP_ADDK,/* A B C R[A] := R[B] + K[C]:number */ 264 OP_SUBK,/* A B C R[A] := R[B] - K[C]:number */ 265 OP_MULK,/* A B C R[A] := R[B] * K[C]:number */ 266 OP_MODK,/* A B C R[A] := R[B] % K[C]:number */ 267 OP_POWK,/* A B C R[A] := R[B] ^ K[C]:number */ 268 OP_DIVK,/* A B C R[A] := R[B] / K[C]:number */ 269 OP_IDIVK,/* A B C R[A] := R[B] // K[C]:number */ 270 271 OP_BANDK,/* A B C R[A] := R[B] & K[C]:integer */ 272 OP_BORK,/* A B C R[A] := R[B] | K[C]:integer */ 273 OP_BXORK,/* A B C R[A] := R[B] ~ K[C]:integer */ 274 275 OP_SHRI,/* A B sC R[A] := R[B] >> sC */ 276 OP_SHLI,/* A B sC R[A] := sC << R[B] */ 277 278 OP_ADD,/* A B C R[A] := R[B] + R[C] */ 279 OP_SUB,/* A B C R[A] := R[B] - R[C] */ 280 OP_MUL,/* A B C R[A] := R[B] * R[C] */ 281 OP_MOD,/* A B C R[A] := R[B] % R[C] */ 282 OP_POW,/* A B C R[A] := R[B] ^ R[C] */ 283 OP_DIV,/* A B C R[A] := R[B] / R[C] */ 284 OP_IDIV,/* A B C R[A] := R[B] // R[C] */ 285 286 OP_BAND,/* A B C R[A] := R[B] & R[C] */ 287 OP_BOR,/* A B C R[A] := R[B] | R[C] */ 288 OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */ 289 OP_SHL,/* A B C R[A] := R[B] << R[C] */ 290 OP_SHR,/* A B C R[A] := R[B] >> R[C] */ 291 292 OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] (*) */ 293 OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */ 294 OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */ 295 296 OP_UNM,/* A B R[A] := -R[B] */ 297 OP_BNOT,/* A B R[A] := ~R[B] */ 298 OP_NOT,/* A B R[A] := not R[B] */ 299 OP_LEN,/* A B R[A] := #R[B] (length operator) */ 300 301 OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */ 302 303 OP_CLOSE,/* A close all upvalues >= R[A] */ 304 OP_TBC,/* A mark variable A "to be closed" */ 305 OP_JMP,/* sJ pc += sJ */ 306 OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */ 307 OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */ 308 OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */ 309 310 OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */ 311 OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */ 312 OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */ 313 OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */ 314 OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */ 315 OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */ 316 317 OP_TEST,/* A k if (not R[A] == k) then pc++ */ 318 OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] (*) */ 319 320 OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */ 321 OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */ 322 323 OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */ 324 OP_RETURN0,/* return */ 325 OP_RETURN1,/* A return R[A] */ 326 327 OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */ 328 OP_FORPREP,/* A Bx <check values and prepare counters>; 329 if not to run then pc+=Bx+1; */ 330 331 OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */ 332 OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */ 333 OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */ 334 335 OP_SETLIST,/* A vB vC k R[A][vC+i] := R[A+i], 1 <= i <= vB */ 336 337 OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */ 338 339 OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */ 340 341 OP_VARARGPREP,/*A (adjust vararg parameters) */ 342 343 OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ 344 } OpCode; 345 346 347 #define NUM_OPCODES ((int)(OP_EXTRAARG) + 1) 348 349 350 351 /*=========================================================================== 352 Notes: 353 354 (*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean 355 value, in a code equivalent to (not cond ? false : true). (It 356 produces false and skips the next instruction producing true.) 357 358 (*) Opcodes OP_MMBIN and variants follow each arithmetic and 359 bitwise opcode. If the operation succeeds, it skips this next 360 opcode. Otherwise, this opcode calls the corresponding metamethod. 361 362 (*) Opcode OP_TESTSET is used in short-circuit expressions that need 363 both to jump and to produce a value, such as (a = b or c). 364 365 (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then 366 'top' is set to last_result+1, so next open instruction (OP_CALL, 367 OP_RETURN*, OP_SETLIST) may use 'top'. 368 369 (*) In OP_VARARG, if (C == 0) then use actual number of varargs and 370 set top (like in OP_CALL with C == 0). 371 372 (*) In OP_RETURN, if (B == 0) then return up to 'top'. 373 374 (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always 375 OP_EXTRAARG. 376 377 (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then 378 real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the 379 bits of C). 380 381 (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a 382 power of 2) plus 1, or zero for size zero. If not k, the array size 383 is C. Otherwise, the array size is EXTRAARG _ C. 384 385 (*) For comparisons, k specifies what condition the test should accept 386 (true or false). 387 388 (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped 389 (the constant is the first operand). 390 391 (*) All 'skips' (pc++) assume that next instruction is a jump. 392 393 (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the 394 function builds upvalues, which may need to be closed. C > 0 means 395 the function is vararg, so that its 'func' must be corrected before 396 returning; in this case, (C - 1) is its number of fixed parameters. 397 398 (*) In comparisons with an immediate operand, C signals whether the 399 original operand was a float. (It must be corrected in case of 400 metamethods.) 401 402 ===========================================================================*/ 403 404 405 /* 406 ** masks for instruction properties. The format is: 407 ** bits 0-2: op mode 408 ** bit 3: instruction set register A 409 ** bit 4: operator is a test (next instruction must be a jump) 410 ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0) 411 ** bit 6: instruction sets 'L->top' for next instruction (when C == 0) 412 ** bit 7: instruction is an MM instruction (call a metamethod) 413 */ 414 415 LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];) 416 417 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7)) 418 #define testAMode(m) (luaP_opmodes[m] & (1 << 3)) 419 #define testTMode(m) (luaP_opmodes[m] & (1 << 4)) 420 #define testITMode(m) (luaP_opmodes[m] & (1 << 5)) 421 #define testOTMode(m) (luaP_opmodes[m] & (1 << 6)) 422 #define testMMMode(m) (luaP_opmodes[m] & (1 << 7)) 423 424 425 LUAI_FUNC int luaP_isOT (Instruction i); 426 LUAI_FUNC int luaP_isIT (Instruction i); 427 428 429 #endif