GuitarLSTM

Deep learning models for guitar amp/pedal emulation using LSTM with Keras
Log | Files | Refs | README

commit 608d2e4d0f38082f61afe741995607529e54cca7
parent 5fd1fa74b9f07c526d6e7ad0b0ef4e96c49602d3
Author: keith <kbloemer89@gmail.com>
Date:   Sun,  6 Dec 2020 14:11:52 -0600

Added split_data arg to train.py to reduce ram usage

Diffstat:
MREADME.md | 8++++++++
Mtrain.py | 93+++++++++++++++++++++++++++++++++++++++++++++++++++++++------------------------
2 files changed, 73 insertions(+), 28 deletions(-)

diff --git a/README.md b/README.md @@ -54,6 +54,7 @@ python predict.py data/ts9_test1_in_FP32.wav output models/ts9_model.h5 --training_mode=0 # enter 0, 1, or 2 for speed tranining, accuracy training, or extended training, respectively --input_size=150 # sets the number of previous samples to consider for each output sample of audio +--split_data=3 # splits the input data by X amount to reduce RAM usage; trains the model on each split separately --max_epochs=1 # sets the number of epochs to train for; intended to be increased dramatically for extended training --batch_size=4096 # sets the batch size of data for training @@ -93,6 +94,13 @@ which requires about 8GB of RAM. Increasing this setting will improve training accuracy, but the size of the preprocessed wav data in RAM will increase as well. +You can also use the "--split_data" parameter with train.py to +train the same model on separate sections of the data. This +will reduce RAM usage while still allowing a high input_size +setting. For example, "--split_data=5" would split the data +into 5 sections, and train each section separately. The default +is 1, or no splitting. + Adding a custom dataloader would reduce RAM usage at the cost of training speed, and will be a focus of future work. diff --git a/train.py b/train.py @@ -50,7 +50,9 @@ def main(args): Note: RAM may be a limiting factor for the parameter "input_size". The wav data is preprocessed and stored in RAM, which improves training speed but quickly runs out if using a large number for "input_size". Reduce this if you are experiencing - RAM issues. + RAM issues. Also, you can use the "--split_data" option to divide the data by the + specified amount and train the model on each set. Doing this will allow for a higher + input_size setting (more accurate results). --training_mode=0 Speed training (default) --training_mode=1 Accuracy training @@ -89,25 +91,6 @@ def main(args): conv1d_filters = 36 hidden_units= 96 - - # Load and Preprocess Data ########################################### - in_rate, in_data = wavfile.read(args.in_file) - out_rate, out_data = wavfile.read(args.out_file) - - X = in_data.astype(np.float32).flatten() - X = normalize(X).reshape(len(X),1) - y = out_data.astype(np.float32).flatten() - y = normalize(y).reshape(len(y),1) - - y_ordered = y[input_size-1:] - - indices = np.arange(input_size) + np.arange(len(X)-input_size+1)[:,np.newaxis] - X_ordered = tf.gather(X,indices) - - shuffled_indices = np.random.permutation(len(X_ordered)) - X_random = tf.gather(X_ordered,shuffled_indices) - y_random = tf.gather(y_ordered, shuffled_indices) - # Create Sequential Model ########################################### clear_session() model = Sequential() @@ -118,22 +101,75 @@ def main(args): model.compile(optimizer=Adam(learning_rate=learning_rate), loss=error_to_signal, metrics=[error_to_signal]) print(model.summary()) - # Train Model ################################################### - model.fit(X_random,y_random, epochs=epochs, batch_size=batch_size, validation_split=test_size) + # Load and Preprocess Data ########################################### + in_rate, in_data = wavfile.read(args.in_file) + out_rate, out_data = wavfile.read(args.out_file) + + X_all = in_data.astype(np.float32).flatten() + X_all = normalize(X_all).reshape(len(X_all),1) + y_all = out_data.astype(np.float32).flatten() + y_all = normalize(y_all).reshape(len(y_all),1) - model.save('models/'+name+'/'+name+'.h5') + # If splitting the data for training, do this part + if args.split_data > 1: + num_split = len(X_all) // args.split_data + X = X_all[0:num_split*args.split_data] + y = y_all[0:num_split*args.split_data] + X_data = np.split(X, args.split_data) + y_data = np.split(y, args.split_data) + + # Perform training on each split dataset + for i in range(len(X_data)): + print("\nTraining on split data " + str(i+1) + "/" +str(len(X_data))) + X_split = X_data[i] + y_split = y_data[i] + + y_ordered = y_split[input_size-1:] + + indices = np.arange(input_size) + np.arange(len(X_split)-input_size+1)[:,np.newaxis] + X_ordered = tf.gather(X_split,indices) + + shuffled_indices = np.random.permutation(len(X_ordered)) + X_random = tf.gather(X_ordered,shuffled_indices) + y_random = tf.gather(y_ordered, shuffled_indices) + + # Train Model ################################################### + model.fit(X_random,y_random, epochs=epochs, batch_size=batch_size, validation_split=0.2) + + + model.save('models/'+name+'/'+name+'.h5') + + # If training on the full set of input data in one run, do this part + else: + y_ordered = y_all[input_size-1:] + + indices = np.arange(input_size) + np.arange(len(X_all)-input_size+1)[:,np.newaxis] + X_ordered = tf.gather(X_all,indices) + + shuffled_indices = np.random.permutation(len(X_ordered)) + X_random = tf.gather(X_ordered,shuffled_indices) + y_random = tf.gather(y_ordered, shuffled_indices) + + # Train Model ################################################### + model.fit(X_random,y_random, epochs=epochs, batch_size=batch_size, validation_split=test_size) + + model.save('models/'+name+'/'+name+'.h5') # Run Prediction ################################################# print("Running prediction..") - y_the_rest, y_last_part = np.split(y_ordered, [int(len(y_ordered)*.8)]) - x_the_rest, x_last_part = np.split(X, [int(len(X)*.8)]) - x_the_rest, x_ordered_last_part = np.split(X_ordered, [int(len(X_ordered)*.8)]) - prediction = model.predict(x_ordered_last_part, batch_size=batch_size) + # Get the last 20% of the wav data to run prediction and plot results + y_the_rest, y_last_part = np.split(y_all, [int(len(y_all)*.8)]) + x_the_rest, x_last_part = np.split(X_all, [int(len(X_all)*.8)]) + y_test = y_last_part[input_size-1:] + indices = np.arange(input_size) + np.arange(len(x_last_part)-input_size+1)[:,np.newaxis] + X_test = tf.gather(x_last_part,indices) + + prediction = model.predict(X_test, batch_size=batch_size) save_wav('models/'+name+'/y_pred.wav', prediction) save_wav('models/'+name+'/x_test.wav', x_last_part) - save_wav('models/'+name+'/y_test.wav', y_last_part) + save_wav('models/'+name+'/y_test.wav', y_test) # Add additional data to the saved model (like input_size) filename = 'models/'+name+'/'+name+'.h5' @@ -166,5 +202,6 @@ if __name__ == "__main__": parser.add_argument("--max_epochs", type=int, default=1) parser.add_argument("--create_plots", type=int, default=1) parser.add_argument("--input_size", type=int, default=100) + parser.add_argument("--split_data", type=int, default=1) args = parser.parse_args() main(args) \ No newline at end of file