kfr

Fast, modern C++ DSP framework, FFT, Sample Rate Conversion, FIR/IIR/Biquad Filters (SSE, AVX, AVX-512, ARM NEON)
Log | Files | Refs | README

commit 28c6ce8d1f98c198f5403f7139dee5597f8e32da
parent afd39ce67cdf54297dfbb71e3dc2c6bf8c9b7dbc
Author: d.levin256@gmail.com <d.levin256@gmail.com>
Date:   Thu,  6 Dec 2018 02:13:21 +0000

IO refactoring

Diffstat:
M.gitignore | 1+
MCMakeLists.txt | 7+++++++
Mexamples/CMakeLists.txt | 2+-
Mexamples/sample_rate_conversion.cpp | 36++++++++++++++++++++----------------
Minclude/kfr/base/conversion.hpp | 120++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-----
Minclude/kfr/io/audiofile.hpp | 522++++++++++++++++++++++++++++++++++---------------------------------------------
Ainclude/kfr/io/dr/README.txt | 9+++++++++
Ainclude/kfr/io/dr/dr_flac.h | 6257+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Ainclude/kfr/io/dr/dr_wav.h | 3727+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Minclude/kfr/io/file.hpp | 213++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-----------
Ainclude/kfr/io/impl/audiofile-impl.cpp | 39+++++++++++++++++++++++++++++++++++++++
Msources.cmake | 2++
Mtests/CMakeLists.txt | 12++++++++++--
Mtests/base_test.cpp | 6+++---
Atests/io_test.cpp | 64++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Atests/test-audio/sine.flac | 0
16 files changed, 10663 insertions(+), 354 deletions(-)

diff --git a/.gitignore b/.gitignore @@ -44,6 +44,7 @@ build64/ cmake-build-debug/ cmake-build-release/ build-*/ +build_*/ # test directory svg/ diff --git a/CMakeLists.txt b/CMakeLists.txt @@ -48,6 +48,9 @@ set(KFR_DFT_SRC ${CMAKE_SOURCE_DIR}/include/kfr/dft/impl/dft-impl-f64.cpp ${CMAKE_SOURCE_DIR}/include/kfr/dft/impl/convolution-impl.cpp) +set(KFR_IO_SRC + ${CMAKE_SOURCE_DIR}/include/kfr/io/impl/audiofile-impl.cpp) + if (ENABLE_TESTS) if (IOS) @@ -98,3 +101,7 @@ target_include_directories(kfr INTERFACE include) add_library(kfr_dft ${KFR_DFT_SRC}) target_link_libraries(kfr_dft kfr) + +add_library(kfr_io ${KFR_IO_SRC}) +target_link_libraries(kfr_io kfr) +target_compile_definitions(kfr_io PUBLIC KFR_ENABLE_FLAC=1) diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt @@ -31,7 +31,7 @@ add_executable(fir fir.cpp) target_link_libraries(fir kfr) add_executable(sample_rate_conversion sample_rate_conversion.cpp) -target_link_libraries(sample_rate_conversion kfr) +target_link_libraries(sample_rate_conversion kfr kfr_io) add_executable(dft dft.cpp) target_link_libraries(dft kfr kfr_dft) diff --git a/examples/sample_rate_conversion.cpp b/examples/sample_rate_conversion.cpp @@ -30,10 +30,11 @@ int main() const size_t destsize = r(resampled.data(), swept_sine); univector<i32> i32data = clamp(resampled.truncate(destsize) * i32max, -i32max, +i32max); - univector2d<i32> data = { i32data }; - - auto wr = sequential_file_writer("audio_high_quality.wav"); - audio_encode(wr, data, audioformat(data, output_sr)); + { + audio_writer_wav<i32> writer(open_file_for_writing(KFR_FILEPATH("audio_high_quality.wav")), + audio_format{ 2, audio_sample_type::i32, output_sr }); + writer.write(i32data.data(), i32data.size()); + } plot_save("audio_high_quality", "audio_high_quality.wav", ""); } @@ -45,10 +46,11 @@ int main() const size_t destsize = r(resampled.data(), swept_sine); univector<i32> i32data = clamp(resampled.truncate(destsize) * i32max, -i32max, +i32max); - univector2d<i32> data = { i32data }; - - auto wr = sequential_file_writer("audio_normal_quality.wav"); - audio_encode(wr, data, audioformat(data, output_sr)); + { + audio_writer_wav<i32> writer(open_file_for_writing(KFR_FILEPATH("audio_normal_quality.wav")), + audio_format{ 2, audio_sample_type::i32, output_sr }); + writer.write(i32data.data(), i32data.size()); + } plot_save("audio_normal_quality", "audio_normal_quality.wav", ""); } @@ -60,10 +62,11 @@ int main() const size_t destsize = r(resampled.data(), swept_sine); univector<i32> i32data = clamp(resampled.truncate(destsize) * i32max, -i32max, +i32max); - univector2d<i32> data = { i32data }; - - auto wr = sequential_file_writer("audio_low_quality.wav"); - audio_encode(wr, data, audioformat(data, output_sr)); + { + audio_writer_wav<i32> writer(open_file_for_writing(KFR_FILEPATH("audio_low_quality.wav")), + audio_format{ 2, audio_sample_type::i32, output_sr }); + writer.write(i32data.data(), i32data.size()); + } plot_save("audio_low_quality", "audio_low_quality.wav", ""); } @@ -75,10 +78,11 @@ int main() const size_t destsize = r(resampled.data(), swept_sine); univector<i32> i32data = clamp(resampled.truncate(destsize) * i32max, -i32max, +i32max); - univector2d<i32> data = { i32data }; - - auto wr = sequential_file_writer("audio_draft_quality.wav"); - audio_encode(wr, data, audioformat(data, output_sr)); + { + audio_writer_wav<i32> writer(open_file_for_writing(KFR_FILEPATH("audio_draft_quality.wav")), + audio_format{ 2, audio_sample_type::i32, output_sr }); + writer.write(i32data.data(), i32data.size()); + } plot_save("audio_draft_quality", "audio_draft_quality.wav", ""); } diff --git a/include/kfr/base/conversion.hpp b/include/kfr/base/conversion.hpp @@ -31,49 +31,137 @@ namespace kfr { +enum class audio_sample_type +{ + unknown, + i8, + i16, + i24, + i32, + i64, + f32, + f64, + + first_float = f32 +}; + +inline constexpr size_t audio_sample_sizeof(audio_sample_type type) +{ + switch (type) + { + case audio_sample_type::i8: + return 1; + case audio_sample_type::i16: + return 2; + case audio_sample_type::i32: + case audio_sample_type::f32: + return 4; + case audio_sample_type::i64: + case audio_sample_type::f64: + return 8; + default: + return 0; + } +} + +inline constexpr size_t audio_sample_bit_depth(audio_sample_type type) +{ + return audio_sample_sizeof(type) * 8; +} + +using audio_sample_type_clist = + cvals_t<audio_sample_type, audio_sample_type::i8, audio_sample_type::i16, audio_sample_type::i24, + audio_sample_type::i32, audio_sample_type::i64, audio_sample_type::f32, audio_sample_type::f64>; + +template <audio_sample_type type> +struct audio_sample_get_type; + +template <> +struct audio_sample_get_type<audio_sample_type::i8> +{ + using type = i8; +}; +template <> +struct audio_sample_get_type<audio_sample_type::i16> +{ + using type = i16; +}; +template <> +struct audio_sample_get_type<audio_sample_type::i24> +{ + using type = i24; +}; +template <> +struct audio_sample_get_type<audio_sample_type::i32> +{ + using type = i32; +}; +template <> +struct audio_sample_get_type<audio_sample_type::i64> +{ + using type = i64; +}; +template <> +struct audio_sample_get_type<audio_sample_type::f32> +{ + using type = f32; +}; +template <> +struct audio_sample_get_type<audio_sample_type::f64> +{ + using type = f64; +}; + template <typename T> struct audio_sample_traits; template <> struct audio_sample_traits<i8> { - constexpr static f32 scale = 127.f; + constexpr static f32 scale = 127.f; + constexpr static audio_sample_type type = audio_sample_type::i8; }; template <> struct audio_sample_traits<i16> { - constexpr static f32 scale = 32767.f; + constexpr static f32 scale = 32767.f; + constexpr static audio_sample_type type = audio_sample_type::i16; }; template <> struct audio_sample_traits<i24> { - constexpr static f32 scale = 8388607.f; + constexpr static f32 scale = 8388607.f; + constexpr static audio_sample_type type = audio_sample_type::i24; }; template <> struct audio_sample_traits<i32> { - constexpr static f64 scale = 2147483647.0; + constexpr static f64 scale = 2147483647.0; + constexpr static audio_sample_type type = audio_sample_type::i32; }; template <> struct audio_sample_traits<i64> { - constexpr static f64 scale = 9223372036854775807.0; + constexpr static f64 scale = 9223372036854775807.0; + constexpr static audio_sample_type type = audio_sample_type::i64; }; template <> struct audio_sample_traits<f32> { - constexpr static f32 scale = 1; + constexpr static f32 scale = 1; + constexpr static audio_sample_type type = audio_sample_type::f32; }; template <> struct audio_sample_traits<f64> { - constexpr static f64 scale = 1; + constexpr static f64 scale = 1; + constexpr static audio_sample_type type = audio_sample_type::f64; }; template <typename Tout, typename Tin, typename Tout_traits = audio_sample_traits<Tout>, @@ -122,4 +210,22 @@ void convert(Tout* out, const Tin* in, size_t size) out[i] = convert_sample<Tout, Tin, Tout_traits, Tin_traits>(in[i]); } } + +template <typename Tout, typename Tout_traits = audio_sample_traits<Tout>> +void convert(Tout* out, const void* in, audio_sample_type in_type, size_t size) +{ + cswitch(audio_sample_type_clist{}, in_type, [&](auto t) { + using type = typename audio_sample_get_type<val_of(t)>::type; + convert(out, reinterpret_cast<const type*>(in), size); + }); +} + +template <typename Tin, typename Tin_traits = audio_sample_traits<Tin>> +void convert(void* out, audio_sample_type out_type, const Tin* in, size_t size) +{ + cswitch(audio_sample_type_clist{}, out_type, [&](auto t) { + using type = typename audio_sample_get_type<val_of(t)>::type; + convert(reinterpret_cast<type*>(out), in, size); + }); +} } // namespace kfr diff --git a/include/kfr/io/audiofile.hpp b/include/kfr/io/audiofile.hpp @@ -26,358 +26,286 @@ #pragma once #include "../base/basic_expressions.hpp" +#include "../base/conversion.hpp" #include "../base/univector.hpp" #include "../base/vec.hpp" #include "../cometa/ctti.hpp" #include "file.hpp" +#ifndef KFR_ENABLE_WAV +#define KFR_ENABLE_WAV 1 +#endif +#ifndef KFR_ENABLE_FLAC +#define KFR_ENABLE_FLAC 0 +#endif + +#if KFR_ENABLE_WAV +#define DR_WAV_NO_STDIO +#define DR_WAV_NO_CONVERSION_API +#include "dr/dr_wav.h" +#endif +#if KFR_ENABLE_FLAC +#define DR_FLAC_NO_STDIO +#define DR_FLAC_NO_CONVERSION_API +#include "dr/dr_flac.h" +#endif + namespace kfr { -template <typename Tout, typename Tin, size_t Tag1, size_t Tag2, typename E1> -void write_interleaved(E1&& dest, const univector2d<Tin, Tag1, Tag2>& src) +struct audio_format { - const size_t channels = src.size(); - if (channels == 1) - { - process(std::forward<E1>(dest), src[0]); - } - else if (channels == 2) - { - process(std::forward<E1>(dest), pack(src[0], src[1]), 0, infinite_size, nullptr, nullptr, - csize_t<2>()); - } - else - { - const size_t size = src[0].size(); - internal::expression_writer<Tout, E1> wr = writer<Tout>(std::forward<E1>(dest)); - for (size_t i = 0; i < size; i++) - for (size_t ch = 0; ch < channels; ch++) - wr.write(src[ch][i]); - } -} + size_t channels = 2; + audio_sample_type type = audio_sample_type::i16; + fmax samplerate = 44100; + bool use_w64 = false; +}; -enum class audiodatatype +struct audio_format_and_length : audio_format { - unknown, - i16, - i24, - i24a32, - i32, - f32, - f64 + using audio_format::audio_format; + audio_format_and_length(const audio_format& fmt) : audio_format(fmt) {} + + imax length = 0; // in samples }; +template <typename T> +using audio_reader = abstract_reader<T>; +template <typename T> +using audio_writer = abstract_writer<T>; + namespace internal { -template <typename T> -constexpr range<fmax> audio_range() +#if KFR_ENABLE_WAV +static size_t drwav_writer_write_proc(abstract_writer<void>* file, const void* pData, size_t bytesToWrite) { - return { -std::numeric_limits<T>::max(), std::numeric_limits<T>::max() }; + return file->write(pData, bytesToWrite); } - -template <> -constexpr range<fmax> audio_range<f32>() +static drwav_bool32 drwav_writer_seek_proc(abstract_writer<void>* file, int offset, drwav_seek_origin origin) { - return { -1.0, +1.0 }; + return file->seek(offset, origin == drwav_seek_origin_start ? seek_origin::begin : seek_origin::current); } - -template <> -constexpr range<fmax> audio_range<f64>() +static size_t drwav_reader_read_proc(abstract_reader<void>* file, void* pBufferOut, size_t bytesToRead) { - return { -1.0, +1.0 }; + return file->read(pBufferOut, bytesToRead); } - -inline size_t get_audiobitdepth(audiodatatype type) +static drwav_bool32 drwav_reader_seek_proc(abstract_reader<void>* file, int offset, drwav_seek_origin origin) { - constexpr size_t bits[]{ 0, 16, 24, 24, 32, 32, 64 }; - return static_cast<size_t>(type) < 7 ? bits[static_cast<size_t>(type)] : 0; + return file->seek(offset, origin == drwav_seek_origin_start ? seek_origin::begin : seek_origin::current); } - -template <typename T> -inline audiodatatype get_audiodatatype() +#endif +#if KFR_ENABLE_FLAC +static size_t drflac_reader_read_proc(abstract_reader<void>* file, void* pBufferOut, size_t bytesToRead) { - if (ctypeid<T>() == ctypeid<i16>()) - return audiodatatype::i16; - else if (ctypeid<T>() == ctypeid<i32>()) - return audiodatatype::i32; - else if (ctypeid<T>() == ctypeid<f32>()) - return audiodatatype::f32; - else if (ctypeid<T>() == ctypeid<f64>()) - return audiodatatype::f64; - else - return audiodatatype::unknown; + return file->read(pBufferOut, bytesToRead); } -} - -struct audioformat -{ - size_t channels; - size_t samples; - audiodatatype type; - fmax samplerate; - - template <typename T, size_t Tag1, size_t Tag2> - constexpr audioformat(const univector2d<T, Tag1, Tag2>& data, fmax sample_rate) - : channels(data.size()), samples(data[0].size()), type(internal::get_audiodatatype<T>()), - samplerate(sample_rate) - { - } -}; - -namespace internal -{ -static constexpr u32 FourCC(const char (&ch)[5]) +static drflac_bool32 drflac_reader_seek_proc(abstract_reader<void>* file, int offset, + drflac_seek_origin origin) { - return u32(u8(ch[0])) | u32(u8(ch[1])) << 8 | u32(u8(ch[2])) << 16 | u32(u8(ch[3])) << 24; + return file->seek(offset, origin == drflac_seek_origin_start ? seek_origin::begin : seek_origin::current); } +#endif -constexpr u32 cWAVE_FORMAT_PCM = 1; -constexpr u32 cWAVE_FORMAT_IEEE = 3; +} // namespace internal -constexpr u32 ccRIFF = FourCC("RIFF"); -constexpr u32 ccWAVE = FourCC("WAVE"); -constexpr u32 ccfmt = FourCC("fmt "); -constexpr u32 ccdata = FourCC("data"); - -constexpr u32 ccFORM = FourCC("FORM"); -constexpr u32 ccAIFF = FourCC("AIFF"); -constexpr u32 ccAIFC = FourCC("AIFC"); -constexpr u32 ccCOMM = FourCC("COMM"); -constexpr u32 ccSSND = FourCC("SSND"); -constexpr u32 ccNONE = FourCC("NONE"); -constexpr u32 ccsowt = FourCC("sowt"); - -CMT_PRAGMA_PACK_PUSH_1 - -struct WAV_FMT -{ - i32 fId; // 'fmt ' - i32 pcmHeaderLength; - i16 wFormatTag; - i16 numChannels; - i32 nSamplesPerSec; - i32 nAvgBytesPerSec; - i16 numBlockAlingn; - i16 numBitsPerSample; -} CMT_GNU_PACKED; - -struct WAV_DATA -{ - i32 dId; // 'data' or 'fact' - i32 dLen; - u8 data[1]; -} CMT_GNU_PACKED; - -struct WAV_DATA_HDR -{ - i32 dId; // 'data' or 'fact' - i32 dLen; -} CMT_GNU_PACKED; - -struct AIFF_FMT -{ - i32 chunkID; - i32 chunkLen; - i16 channels; - u32 frames; - i16 bitsPerSample; - f80 sampleRate; - i32 compression; -} CMT_GNU_PACKED; - -struct AIFF_DATA -{ - i32 chunkID; - i32 chunkLen; - u32 offset; -} CMT_GNU_PACKED; - -struct RIFF_HDR -{ - i32 riffID; // 'RIFF' or 'COMM' - i32 fileLen; - i32 formatID; // 'WAVE' or 'AIFF' -} CMT_GNU_PACKED; - -struct WAV_HEADER -{ - RIFF_HDR riff; - WAV_FMT fmt; - WAV_DATA_HDR data; -} CMT_GNU_PACKED; - -struct CHUNK_HDR -{ - i32 chunkID; - i32 chunkLen; -} CMT_GNU_PACKED; - -CMT_PRAGMA_PACK_POP - -template <size_t = 0> -bool audio_test_wav(const array_ref<u8>& rawbytes) +#if KFR_ENABLE_WAV +template <typename T> +struct audio_writer_wav : audio_writer<T> { - if (rawbytes.size() < sizeof(RIFF_HDR)) + audio_writer_wav(std::shared_ptr<abstract_writer<>>&& writer, const audio_format& fmt) + : writer(std::move(writer)), f(nullptr), fmt(fmt) { - return false; + drwav_data_format wav_fmt; + wav_fmt.channels = fmt.channels; + wav_fmt.sampleRate = fmt.samplerate; + wav_fmt.format = + fmt.type >= audio_sample_type::first_float ? DR_WAVE_FORMAT_IEEE_FLOAT : DR_WAVE_FORMAT_PCM; + wav_fmt.bitsPerSample = audio_sample_bit_depth(fmt.type); + wav_fmt.container = fmt.use_w64 ? drwav_container_w64 : drwav_container_riff; + f = drwav_open_write(&wav_fmt, (drwav_write_proc)&internal::drwav_writer_write_proc, + (drwav_seek_proc)&internal::drwav_writer_seek_proc, this->writer.get()); } - const RIFF_HDR* hdr = reinterpret_cast<const RIFF_HDR*>(rawbytes.data()); - if (hdr->riffID != ccRIFF) - { - return false; - } - if (hdr->formatID != ccWAVE) - { - return false; - } - return true; -} + ~audio_writer_wav() { drwav_close(f); } -template <size_t = 0> -bool audio_test_aiff(const array_ref<u8>& rawbytes) -{ - if (rawbytes.size() < sizeof(RIFF_HDR)) - { - return false; - } - const RIFF_HDR* hdr = reinterpret_cast<const RIFF_HDR*>(rawbytes.data()); - if (hdr->riffID != ccFORM) - { - return false; - } - if (hdr->formatID != ccAIFF && hdr->formatID != ccAIFC) + size_t write(const T* data, size_t size) { - return false; + if (fmt.type == audio_sample_type::unknown) + return 0; + if (fmt.type == audio_sample_traits<T>::type) + { + const size_t sz = drwav_write(f, size, data); + fmt.length += sz / fmt.channels; + return sz; + } + else + { + univector<uint8_t> native(size * audio_sample_sizeof(fmt.type)); + convert(native.data(), fmt.type, data, size); + const size_t sz = drwav_write(f, size, native.data()); + fmt.length += sz / fmt.channels; + return sz; + } } - return true; -} - -enum class file_status -{ - ok, - unknown_format, - bad_format, - unsupported_compression, - unsupported_bit_format + const audio_format_and_length& format() const { return fmt; } + imax tell() const { return fmt.length; } + bool seek(imax position, seek_origin origin) { return false; } + +private: + std::shared_ptr<abstract_writer<>> writer; + drwav* f; + audio_format_and_length fmt; }; -template <size_t = 0> -file_status audio_info_wav(audioformat& info, const array_ref<u8>& rawbytes) +template <typename T> +struct audio_reader_wav : audio_reader<T> { - const CHUNK_HDR* chunk = ptr_cast<CHUNK_HDR>(rawbytes.data() + 12); - const void* end = ptr_cast<char>(rawbytes.end()); - const WAV_FMT* fmt = nullptr; - const WAV_DATA* rawdata = nullptr; - while (chunk < end) + audio_reader_wav(std::shared_ptr<abstract_reader<>>&& reader) : reader(std::move(reader)) { - switch (chunk->chunkID) + f = drwav_open((drwav_read_proc)&internal::drwav_reader_read_proc, + (drwav_seek_proc)&internal::drwav_reader_seek_proc, this->reader.get()); + fmt.channels = f->channels; + fmt.samplerate = f->sampleRate; + fmt.length = f->totalSampleCount / fmt.channels; + switch (f->translatedFormatTag) { - case ccfmt: - fmt = ptr_cast<WAV_FMT>(chunk); + case DR_WAVE_FORMAT_IEEE_FLOAT: + switch (f->bitsPerSample) + { + case 32: + fmt.type = audio_sample_type::f32; + break; + case 64: + fmt.type = audio_sample_type::f64; + break; + default: + fmt.type = audio_sample_type::unknown; + break; + } + break; + case DR_WAVE_FORMAT_PCM: + switch (f->bitsPerSample) + { + case 8: + fmt.type = audio_sample_type::i8; + break; + case 16: + fmt.type = audio_sample_type::i16; + break; + case 32: + fmt.type = audio_sample_type::i32; + break; + case 64: + fmt.type = audio_sample_type::i64; + break; + default: + fmt.type = audio_sample_type::unknown; + break; + } break; - case ccdata: - rawdata = ptr_cast<WAV_DATA>(chunk); + default: + fmt.type = audio_sample_type::unknown; break; } - chunk = ptr_cast<CHUNK_HDR>(ptr_cast<u8>(chunk) + chunk->chunkLen + 8); - } - if (!fmt || !rawdata) - { - return file_status::bad_format; } + ~audio_reader_wav() { drwav_close(f); } - if (fmt->wFormatTag != cWAVE_FORMAT_PCM && fmt->wFormatTag != cWAVE_FORMAT_IEEE) - { - return file_status::unsupported_compression; - } + const audio_format_and_length& format() const { return fmt; } - int storedbits = fmt->numBlockAlingn * 8 / fmt->numChannels; - if (fmt->wFormatTag == cWAVE_FORMAT_PCM && fmt->numBitsPerSample == 16 && storedbits == 16) - { - info.type = audiodatatype::i16; - } - else if (fmt->wFormatTag == cWAVE_FORMAT_PCM && fmt->numBitsPerSample == 24 && storedbits == 24) + size_t read(T* data, size_t size) { - info.type = audiodatatype::i24; - } - else if (fmt->wFormatTag == cWAVE_FORMAT_PCM && fmt->numBitsPerSample == 24 && storedbits == 32) - { - info.type = audiodatatype::i24a32; + if (fmt.type == audio_sample_type::unknown) + return 0; + if (fmt.type == audio_sample_traits<T>::type) + { + return drwav_read(f, size, data); + } + else + { + univector<uint8_t> native(size * audio_sample_sizeof(fmt.type)); + const size_t sz = drwav_read(f, size, native.data()); + convert(data, native.data(), fmt.type, sz); + return sz; + } } - else if (fmt->wFormatTag == cWAVE_FORMAT_PCM && fmt->numBitsPerSample == 32 && storedbits == 32) + imax tell() const { return position; } + bool seek(imax offset, seek_origin origin) { - info.type = audiodatatype::i32; + switch (origin) + { + case seek_origin::current: + return drwav_seek_to_sample(f, this->position + offset); + case seek_origin::begin: + return drwav_seek_to_sample(f, offset); + case seek_origin::end: + return drwav_seek_to_sample(f, fmt.length + offset); + default: + return false; + } } - else if (fmt->wFormatTag == cWAVE_FORMAT_IEEE && fmt->numBitsPerSample == 32 && storedbits == 32) + +private: + std::shared_ptr<abstract_reader<>> reader; + drwav* f; + audio_format_and_length fmt; + imax position = 0; +}; +#endif + +#if KFR_ENABLE_FLAC +template <typename T> +struct audio_reader_flac : audio_reader<T> +{ + audio_reader_flac(std::shared_ptr<abstract_reader<>>&& reader) : reader(std::move(reader)) { - info.type = audiodatatype::f32; + f = drflac_open((drflac_read_proc)&internal::drflac_reader_read_proc, + (drflac_seek_proc)&internal::drflac_reader_seek_proc, this->reader.get()); + fmt.channels = f->channels; + fmt.samplerate = f->sampleRate; + fmt.length = f->totalSampleCount / fmt.channels; + fmt.type = audio_sample_type::i32; } - else if (fmt->wFormatTag == cWAVE_FORMAT_IEEE && fmt->numBitsPerSample == 64 && storedbits == 64) + ~audio_reader_flac() { drflac_close(f); } + + const audio_format_and_length& format() const { return fmt; } + + size_t read(T* data, size_t size) { - info.type = audiodatatype::f64; + if (fmt.type == audio_sample_type::unknown) + return 0; + if (audio_sample_traits<T>::type == audio_sample_type::i32) + { + return drflac_read_s32(f, size, reinterpret_cast<i32*>(data)); + } + else + { + univector<i32> native(size * sizeof(i32)); + const size_t sz = drflac_read_s32(f, size, native.data()); + convert(data, native.data(), sz); + return sz; + } } - else + imax tell() const { return position; } + bool seek(imax offset, seek_origin origin) { - return file_status::unsupported_bit_format; + switch (origin) + { + case seek_origin::current: + return drflac_seek_to_sample(f, this->position + offset); + case seek_origin::begin: + return drflac_seek_to_sample(f, offset); + case seek_origin::end: + return drflac_seek_to_sample(f, fmt.length + offset); + default: + return false; + } } - if (fmt->numChannels < 1 || fmt->numChannels > 16) - return file_status::unsupported_bit_format; - - info.channels = size_t(fmt->numChannels); - info.samplerate = size_t(fmt->nSamplesPerSec); - info.samples = size_t(rawdata->dLen) / info.channels / (get_audiobitdepth(info.type) / 8); - - return file_status::ok; -} - -template <size_t = 0> -file_status audio_info(audioformat& info, const array_ref<u8>& file_bytes) -{ - if (audio_test_wav(file_bytes)) - return audio_info_wav(info, file_bytes); - else - return file_status::unknown_format; -} -} - -template <size_t = 0> -void audio_encode_header(internal::expression_sequential_file_writer& dest, const audioformat& info) -{ - using namespace internal; - WAV_HEADER hdr; - zeroize(hdr); - const size_t framesize = info.channels * get_audiobitdepth(info.type) / 8; - hdr.riff.riffID = ccRIFF; - hdr.riff.formatID = ccWAVE; - hdr.riff.fileLen = autocast(info.samples * framesize + sizeof(hdr) - 8); - hdr.fmt.fId = ccfmt; - hdr.fmt.pcmHeaderLength = autocast(sizeof(hdr.fmt) - sizeof(CHUNK_HDR)); - hdr.fmt.numBlockAlingn = autocast(framesize); - hdr.fmt.nAvgBytesPerSec = autocast(info.samplerate * framesize); - hdr.fmt.nSamplesPerSec = autocast(info.samplerate); - hdr.fmt.numChannels = autocast(info.channels); - hdr.fmt.wFormatTag = info.type >= audiodatatype::f32 ? cWAVE_FORMAT_IEEE : cWAVE_FORMAT_PCM; - hdr.fmt.numBitsPerSample = autocast(get_audiobitdepth(info.type)); - hdr.data.dId = ccdata; - hdr.data.dLen = autocast(info.samples * framesize); - - dest.write(hdr); -} - -template <typename T, size_t Tag1, size_t Tag2> -void audio_encode_audio(internal::expression_sequential_file_writer& dest, - const univector2d<T, Tag1, Tag2>& audio) -{ - write_interleaved<T>(dest, audio); -} +private: + std::shared_ptr<abstract_reader<>> reader; + drflac* f; + audio_format_and_length fmt; + imax position = 0; +}; +#endif -template <typename T, size_t Tag1, size_t Tag2> -void audio_encode(internal::expression_sequential_file_writer& dest, const univector2d<T, Tag1, Tag2>& audio, - const audioformat& info) -{ - audio_encode_header(dest, info); - audio_encode_audio(dest, audio); -} -} +} // namespace kfr diff --git a/include/kfr/io/dr/README.txt b/include/kfr/io/dr/README.txt @@ -0,0 +1,9 @@ +Code for reading/writing wav and reading flac files. + +These two files are released to public domain by the author: +dr_flac.h +dr_wav.h + +See also information in these files. + +https://github.com/mackron/dr_libs diff --git a/include/kfr/io/dr/dr_flac.h b/include/kfr/io/dr/dr_flac.h @@ -0,0 +1,6257 @@ +// FLAC audio decoder. Public domain. See "unlicense" statement at the end of this file. +// dr_flac - v0.10.0 - 2018-09-11 +// +// David Reid - mackron@gmail.com + +// USAGE +// +// dr_flac is a single-file library. To use it, do something like the following in one .c file. +// #define DR_FLAC_IMPLEMENTATION +// #include "dr_flac.h" +// +// You can then #include this file in other parts of the program as you would with any other header file. To decode audio data, +// do something like the following: +// +// drflac* pFlac = drflac_open_file("MySong.flac"); +// if (pFlac == NULL) { +// // Failed to open FLAC file +// } +// +// drflac_int32* pSamples = malloc(pFlac->totalSampleCount * sizeof(drflac_int32)); +// drflac_uint64 numberOfInterleavedSamplesActuallyRead = drflac_read_s32(pFlac, pFlac->totalSampleCount, pSamples); +// +// The drflac object represents the decoder. It is a transparent type so all the information you need, such as the number of +// channels and the bits per sample, should be directly accessible - just make sure you don't change their values. Samples are +// always output as interleaved signed 32-bit PCM. In the example above a native FLAC stream was opened, however dr_flac has +// seamless support for Ogg encapsulated FLAC streams as well. +// +// You do not need to decode the entire stream in one go - you just specify how many samples you'd like at any given time and +// the decoder will give you as many samples as it can, up to the amount requested. Later on when you need the next batch of +// samples, just call it again. Example: +// +// while (drflac_read_s32(pFlac, chunkSize, pChunkSamples) > 0) { +// do_something(); +// } +// +// You can seek to a specific sample with drflac_seek_to_sample(). The given sample is based on interleaving. So for example, +// if you were to seek to the sample at index 0 in a stereo stream, you'll be seeking to the first sample of the left channel. +// The sample at index 1 will be the first sample of the right channel. The sample at index 2 will be the second sample of the +// left channel, etc. +// +// +// If you just want to quickly decode an entire FLAC file in one go you can do something like this: +// +// unsigned int channels; +// unsigned int sampleRate; +// drflac_uint64 totalSampleCount; +// drflac_int32* pSampleData = drflac_open_and_decode_file_s32("MySong.flac", &channels, &sampleRate, &totalSampleCount); +// if (pSampleData == NULL) { +// // Failed to open and decode FLAC file. +// } +// +// ... +// +// drflac_free(pSampleData); +// +// +// You can read samples as signed 16-bit integer and 32-bit floating-point PCM with the *_s16() and *_f32() family of APIs +// respectively, but note that these should be considered lossy. +// +// +// If you need access to metadata (album art, etc.), use drflac_open_with_metadata(), drflac_open_file_with_metdata() or +// drflac_open_memory_with_metadata(). The rationale for keeping these APIs separate is that they're slightly slower than the +// normal versions and also just a little bit harder to use. +// +// dr_flac reports metadata to the application through the use of a callback, and every metadata block is reported before +// drflac_open_with_metdata() returns. +// +// +// The main opening APIs (drflac_open(), etc.) will fail if the header is not present. The presents a problem in certain +// scenarios such as broadcast style streams like internet radio where the header may not be present because the user has +// started playback mid-stream. To handle this, use the relaxed APIs: drflac_open_relaxed() and drflac_open_with_metadata_relaxed(). +// +// It is not recommended to use these APIs for file based streams because a missing header would usually indicate a +// corrupted or perverse file. In addition, these APIs can take a long time to initialize because they may need to spend +// a lot of time finding the first frame. +// +// +// +// OPTIONS +// #define these options before including this file. +// +// #define DR_FLAC_NO_STDIO +// Disable drflac_open_file() and family. +// +// #define DR_FLAC_NO_OGG +// Disables support for Ogg/FLAC streams. +// +// #define DR_FLAC_BUFFER_SIZE <number> +// Defines the size of the internal buffer to store data from onRead(). This buffer is used to reduce the number of calls +// back to the client for more data. Larger values means more memory, but better performance. My tests show diminishing +// returns after about 4KB (which is the default). Consider reducing this if you have a very efficient implementation of +// onRead(), or increase it if it's very inefficient. Must be a multiple of 8. +// +// #define DR_FLAC_NO_CRC +// Disables CRC checks. This will offer a performance boost when CRC is unnecessary. +// +// #define DR_FLAC_NO_SIMD +// Disables SIMD optimizations (SSE on x86/x64 architectures). Use this if you are having compatibility issues with your +// compiler. +// +// +// +// QUICK NOTES +// - dr_flac does not currently support changing the sample rate nor channel count mid stream. +// - Audio data is output as signed 32-bit PCM, regardless of the bits per sample the FLAC stream is encoded as. +// - This has not been tested on big-endian architectures. +// - dr_flac is not thread-safe, but its APIs can be called from any thread so long as you do your own synchronization. +// - When using Ogg encapsulation, a corrupted metadata block will result in drflac_open_with_metadata() and drflac_open() +// returning inconsistent samples. + +#ifndef dr_flac_h +#define dr_flac_h + +#include <stddef.h> + +#if defined(_MSC_VER) && _MSC_VER < 1600 +typedef signed char drflac_int8; +typedef unsigned char drflac_uint8; +typedef signed short drflac_int16; +typedef unsigned short drflac_uint16; +typedef signed int drflac_int32; +typedef unsigned int drflac_uint32; +typedef signed __int64 drflac_int64; +typedef unsigned __int64 drflac_uint64; +#else +#include <stdint.h> +typedef int8_t drflac_int8; +typedef uint8_t drflac_uint8; +typedef int16_t drflac_int16; +typedef uint16_t drflac_uint16; +typedef int32_t drflac_int32; +typedef uint32_t drflac_uint32; +typedef int64_t drflac_int64; +typedef uint64_t drflac_uint64; +#endif +typedef drflac_uint8 drflac_bool8; +typedef drflac_uint32 drflac_bool32; +#define DRFLAC_TRUE 1 +#define DRFLAC_FALSE 0 + +// As data is read from the client it is placed into an internal buffer for fast access. This controls the +// size of that buffer. Larger values means more speed, but also more memory. In my testing there is diminishing +// returns after about 4KB, but you can fiddle with this to suit your own needs. Must be a multiple of 8. +#ifndef DR_FLAC_BUFFER_SIZE +#define DR_FLAC_BUFFER_SIZE 4096 +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +// Check if we can enable 64-bit optimizations. +#if defined(_WIN64) || defined(_LP64) || defined(__LP64__) +#define DRFLAC_64BIT +#endif + +#ifdef DRFLAC_64BIT +typedef drflac_uint64 drflac_cache_t; +#else +typedef drflac_uint32 drflac_cache_t; +#endif + +// The various metadata block types. +#define DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO 0 +#define DRFLAC_METADATA_BLOCK_TYPE_PADDING 1 +#define DRFLAC_METADATA_BLOCK_TYPE_APPLICATION 2 +#define DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE 3 +#define DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT 4 +#define DRFLAC_METADATA_BLOCK_TYPE_CUESHEET 5 +#define DRFLAC_METADATA_BLOCK_TYPE_PICTURE 6 +#define DRFLAC_METADATA_BLOCK_TYPE_INVALID 127 + +// The various picture types specified in the PICTURE block. +#define DRFLAC_PICTURE_TYPE_OTHER 0 +#define DRFLAC_PICTURE_TYPE_FILE_ICON 1 +#define DRFLAC_PICTURE_TYPE_OTHER_FILE_ICON 2 +#define DRFLAC_PICTURE_TYPE_COVER_FRONT 3 +#define DRFLAC_PICTURE_TYPE_COVER_BACK 4 +#define DRFLAC_PICTURE_TYPE_LEAFLET_PAGE 5 +#define DRFLAC_PICTURE_TYPE_MEDIA 6 +#define DRFLAC_PICTURE_TYPE_LEAD_ARTIST 7 +#define DRFLAC_PICTURE_TYPE_ARTIST 8 +#define DRFLAC_PICTURE_TYPE_CONDUCTOR 9 +#define DRFLAC_PICTURE_TYPE_BAND 10 +#define DRFLAC_PICTURE_TYPE_COMPOSER 11 +#define DRFLAC_PICTURE_TYPE_LYRICIST 12 +#define DRFLAC_PICTURE_TYPE_RECORDING_LOCATION 13 +#define DRFLAC_PICTURE_TYPE_DURING_RECORDING 14 +#define DRFLAC_PICTURE_TYPE_DURING_PERFORMANCE 15 +#define DRFLAC_PICTURE_TYPE_SCREEN_CAPTURE 16 +#define DRFLAC_PICTURE_TYPE_BRIGHT_COLORED_FISH 17 +#define DRFLAC_PICTURE_TYPE_ILLUSTRATION 18 +#define DRFLAC_PICTURE_TYPE_BAND_LOGOTYPE 19 +#define DRFLAC_PICTURE_TYPE_PUBLISHER_LOGOTYPE 20 + +typedef enum +{ + drflac_container_native, + drflac_container_ogg, + drflac_container_unknown +} drflac_container; + +typedef enum +{ + drflac_seek_origin_start, + drflac_seek_origin_current +} drflac_seek_origin; + +// Packing is important on this structure because we map this directly to the raw data within the SEEKTABLE metadata block. +#pragma pack(2) +typedef struct +{ + drflac_uint64 firstSample; + drflac_uint64 frameOffset; // The offset from the first byte of the header of the first frame. + drflac_uint16 sampleCount; +} drflac_seekpoint; +#pragma pack() + +typedef struct +{ + drflac_uint16 minBlockSize; + drflac_uint16 maxBlockSize; + drflac_uint32 minFrameSize; + drflac_uint32 maxFrameSize; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint64 totalSampleCount; + drflac_uint8 md5[16]; +} drflac_streaminfo; + +typedef struct +{ + // The metadata type. Use this to know how to interpret the data below. + drflac_uint32 type; + + // A pointer to the raw data. This points to a temporary buffer so don't hold on to it. It's best to + // not modify the contents of this buffer. Use the structures below for more meaningful and structured + // information about the metadata. It's possible for this to be null. + const void* pRawData; + + // The size in bytes of the block and the buffer pointed to by pRawData if it's non-NULL. + drflac_uint32 rawDataSize; + + union + { + drflac_streaminfo streaminfo; + + struct + { + int unused; + } padding; + + struct + { + drflac_uint32 id; + const void* pData; + drflac_uint32 dataSize; + } application; + + struct + { + drflac_uint32 seekpointCount; + const drflac_seekpoint* pSeekpoints; + } seektable; + + struct + { + drflac_uint32 vendorLength; + const char* vendor; + drflac_uint32 commentCount; + const void* pComments; + } vorbis_comment; + + struct + { + char catalog[128]; + drflac_uint64 leadInSampleCount; + drflac_bool32 isCD; + drflac_uint8 trackCount; + const void* pTrackData; + } cuesheet; + + struct + { + drflac_uint32 type; + drflac_uint32 mimeLength; + const char* mime; + drflac_uint32 descriptionLength; + const char* description; + drflac_uint32 width; + drflac_uint32 height; + drflac_uint32 colorDepth; + drflac_uint32 indexColorCount; + drflac_uint32 pictureDataSize; + const drflac_uint8* pPictureData; + } picture; + } data; +} drflac_metadata; + + +// Callback for when data needs to be read from the client. +// +// pUserData [in] The user data that was passed to drflac_open() and family. +// pBufferOut [out] The output buffer. +// bytesToRead [in] The number of bytes to read. +// +// Returns the number of bytes actually read. +// +// A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until +// either the entire bytesToRead is filled or you have reached the end of the stream. +typedef size_t (* drflac_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); + +// Callback for when data needs to be seeked. +// +// pUserData [in] The user data that was passed to drflac_open() and family. +// offset [in] The number of bytes to move, relative to the origin. Will never be negative. +// origin [in] The origin of the seek - the current position or the start of the stream. +// +// Returns whether or not the seek was successful. +// +// The offset will never be negative. Whether or not it is relative to the beginning or current position is determined +// by the "origin" parameter which will be either drflac_seek_origin_start or drflac_seek_origin_current. +typedef drflac_bool32 (* drflac_seek_proc)(void* pUserData, int offset, drflac_seek_origin origin); + +// Callback for when a metadata block is read. +// +// pUserData [in] The user data that was passed to drflac_open() and family. +// pMetadata [in] A pointer to a structure containing the data of the metadata block. +// +// Use pMetadata->type to determine which metadata block is being handled and how to read the data. +typedef void (* drflac_meta_proc)(void* pUserData, drflac_metadata* pMetadata); + + +// Structure for internal use. Only used for decoders opened with drflac_open_memory. +typedef struct +{ + const drflac_uint8* data; + size_t dataSize; + size_t currentReadPos; +} drflac__memory_stream; + +// Structure for internal use. Used for bit streaming. +typedef struct +{ + // The function to call when more data needs to be read. + drflac_read_proc onRead; + + // The function to call when the current read position needs to be moved. + drflac_seek_proc onSeek; + + // The user data to pass around to onRead and onSeek. + void* pUserData; + + + // The number of unaligned bytes in the L2 cache. This will always be 0 until the end of the stream is hit. At the end of the + // stream there will be a number of bytes that don't cleanly fit in an L1 cache line, so we use this variable to know whether + // or not the bistreamer needs to run on a slower path to read those last bytes. This will never be more than sizeof(drflac_cache_t). + size_t unalignedByteCount; + + // The content of the unaligned bytes. + drflac_cache_t unalignedCache; + + // The index of the next valid cache line in the "L2" cache. + drflac_uint32 nextL2Line; + + // The number of bits that have been consumed by the cache. This is used to determine how many valid bits are remaining. + drflac_uint32 consumedBits; + + // The cached data which was most recently read from the client. There are two levels of cache. Data flows as such: + // Client -> L2 -> L1. The L2 -> L1 movement is aligned and runs on a fast path in just a few instructions. + drflac_cache_t cacheL2[DR_FLAC_BUFFER_SIZE/sizeof(drflac_cache_t)]; + drflac_cache_t cache; + + // CRC-16. This is updated whenever bits are read from the bit stream. Manually set this to 0 to reset the CRC. For FLAC, this + // is reset to 0 at the beginning of each frame. + drflac_uint16 crc16; + drflac_cache_t crc16Cache; // A cache for optimizing CRC calculations. This is filled when when the L1 cache is reloaded. + drflac_uint32 crc16CacheIgnoredBytes; // The number of bytes to ignore when updating the CRC-16 from the CRC-16 cache. +} drflac_bs; + +typedef struct +{ + // The type of the subframe: SUBFRAME_CONSTANT, SUBFRAME_VERBATIM, SUBFRAME_FIXED or SUBFRAME_LPC. + drflac_uint8 subframeType; + + // The number of wasted bits per sample as specified by the sub-frame header. + drflac_uint8 wastedBitsPerSample; + + // The order to use for the prediction stage for SUBFRAME_FIXED and SUBFRAME_LPC. + drflac_uint8 lpcOrder; + + // The number of bits per sample for this subframe. This is not always equal to the current frame's bit per sample because + // an extra bit is required for side channels when interchannel decorrelation is being used. + drflac_uint32 bitsPerSample; + + // A pointer to the buffer containing the decoded samples in the subframe. This pointer is an offset from drflac::pExtraData. Note that + // it's a signed 32-bit integer for each value. + drflac_int32* pDecodedSamples; +} drflac_subframe; + +typedef struct +{ + // If the stream uses variable block sizes, this will be set to the index of the first sample. If fixed block sizes are used, this will + // always be set to 0. + drflac_uint64 sampleNumber; + + // If the stream uses fixed block sizes, this will be set to the frame number. If variable block sizes are used, this will always be 0. + drflac_uint32 frameNumber; + + // The sample rate of this frame. + drflac_uint32 sampleRate; + + // The number of samples in each sub-frame within this frame. + drflac_uint16 blockSize; + + // The channel assignment of this frame. This is not always set to the channel count. If interchannel decorrelation is being used this + // will be set to DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE, DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE or DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE. + drflac_uint8 channelAssignment; + + // The number of bits per sample within this frame. + drflac_uint8 bitsPerSample; + + // The frame's CRC. + drflac_uint8 crc8; +} drflac_frame_header; + +typedef struct +{ + // The header. + drflac_frame_header header; + + // The number of samples left to be read in this frame. This is initially set to the block size multiplied by the channel count. As samples + // are read, this will be decremented. When it reaches 0, the decoder will see this frame as fully consumed and load the next frame. + drflac_uint32 samplesRemaining; + + // The list of sub-frames within the frame. There is one sub-frame for each channel, and there's a maximum of 8 channels. + drflac_subframe subframes[8]; +} drflac_frame; + +typedef struct +{ + // The function to call when a metadata block is read. + drflac_meta_proc onMeta; + + // The user data posted to the metadata callback function. + void* pUserDataMD; + + + // The sample rate. Will be set to something like 44100. + drflac_uint32 sampleRate; + + // The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. Maximum 8. This is set based on the + // value specified in the STREAMINFO block. + drflac_uint8 channels; + + // The bits per sample. Will be set to something like 16, 24, etc. + drflac_uint8 bitsPerSample; + + // The maximum block size, in samples. This number represents the number of samples in each channel (not combined). + drflac_uint16 maxBlockSize; + + // The total number of samples making up the stream. This includes every channel. For example, if the stream has 2 channels, + // with each channel having a total of 4096, this value will be set to 2*4096 = 8192. Can be 0 in which case it's still a + // valid stream, but just means the total sample count is unknown. Likely the case with streams like internet radio. + drflac_uint64 totalSampleCount; + + + // The container type. This is set based on whether or not the decoder was opened from a native or Ogg stream. + drflac_container container; + + // The number of seekpoints in the seektable. + drflac_uint32 seekpointCount; + + + // Information about the frame the decoder is currently sitting on. + drflac_frame currentFrame; + + // The index of the sample the decoder is currently sitting on. This is only used for seeking. + drflac_uint64 currentSample; + + // The position of the first frame in the stream. This is only ever used for seeking. + drflac_uint64 firstFramePos; + + + // A hack to avoid a malloc() when opening a decoder with drflac_open_memory(). + drflac__memory_stream memoryStream; + + + // A pointer to the decoded sample data. This is an offset of pExtraData. + drflac_int32* pDecodedSamples; + + // A pointer to the seek table. This is an offset of pExtraData, or NULL if there is no seek table. + drflac_seekpoint* pSeekpoints; + + // Internal use only. Only used with Ogg containers. Points to a drflac_oggbs object. This is an offset of pExtraData. + void* _oggbs; + + // The bit streamer. The raw FLAC data is fed through this object. + drflac_bs bs; + + // Variable length extra data. We attach this to the end of the object so we can avoid unnecessary mallocs. + drflac_uint8 pExtraData[1]; +} drflac; + + +// Opens a FLAC decoder. +// +// onRead [in] The function to call when data needs to be read from the client. +// onSeek [in] The function to call when the read position of the client data needs to move. +// pUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek. +// +// Returns a pointer to an object representing the decoder. +// +// Close the decoder with drflac_close(). +// +// This function will automatically detect whether or not you are attempting to open a native or Ogg encapsulated +// FLAC, both of which should work seamlessly without any manual intervention. Ogg encapsulation also works with +// multiplexed streams which basically means it can play FLAC encoded audio tracks in videos. +// +// This is the lowest level function for opening a FLAC stream. You can also use drflac_open_file() and drflac_open_memory() +// to open the stream from a file or from a block of memory respectively. +// +// The STREAMINFO block must be present for this to succeed. Use drflac_open_relaxed() to open a FLAC stream where +// the header may not be present. +// +// See also: drflac_open_file(), drflac_open_memory(), drflac_open_with_metadata(), drflac_close() +drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData); + +// The same as drflac_open(), except attempts to open the stream even when a header block is not present. +// +// Because the header is not necessarily available, the caller must explicitly define the container (Native or Ogg). Do +// not set this to drflac_container_unknown - that is for internal use only. +// +// Opening in relaxed mode will continue reading data from onRead until it finds a valid frame. If a frame is never +// found it will continue forever. To abort, force your onRead callback to return 0, which dr_flac will use as an +// indicator that the end of the stream was found. +drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData); + +// Opens a FLAC decoder and notifies the caller of the metadata chunks (album art, etc.). +// +// onRead [in] The function to call when data needs to be read from the client. +// onSeek [in] The function to call when the read position of the client data needs to move. +// onMeta [in] The function to call for every metadata block. +// pUserData [in, optional] A pointer to application defined data that will be passed to onRead, onSeek and onMeta. +// +// Returns a pointer to an object representing the decoder. +// +// Close the decoder with drflac_close(). +// +// This is slower than drflac_open(), so avoid this one if you don't need metadata. Internally, this will do a DRFLAC_MALLOC() +// and DRFLAC_FREE() for every metadata block except for STREAMINFO and PADDING blocks. +// +// The caller is notified of the metadata via the onMeta callback. All metadata blocks will be handled before the function +// returns. +// +// The STREAMINFO block must be present for this to succeed. Use drflac_open_with_metadata_relaxed() to open a FLAC +// stream where the header may not be present. +// +// Note that this will behave inconsistently with drflac_open() if the stream is an Ogg encapsulated stream and a metadata +// block is corrupted. This is due to the way the Ogg stream recovers from corrupted pages. When drflac_open_with_metadata() +// is being used, the open routine will try to read the contents of the metadata block, whereas drflac_open() will simply +// seek past it (for the sake of efficiency). This inconsistency can result in different samples being returned depending on +// whether or not the stream is being opened with metadata. +// +// See also: drflac_open_file_with_metadata(), drflac_open_memory_with_metadata(), drflac_open(), drflac_close() +drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData); + +// The same as drflac_open_with_metadata(), except attempts to open the stream even when a header block is not present. +// +// See also: drflac_open_with_metadata(), drflac_open_relaxed() +drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData); + +// Closes the given FLAC decoder. +// +// pFlac [in] The decoder to close. +// +// This will destroy the decoder object. +void drflac_close(drflac* pFlac); + + +// Reads sample data from the given FLAC decoder, output as interleaved signed 32-bit PCM. +// +// pFlac [in] The decoder. +// samplesToRead [in] The number of samples to read. +// pBufferOut [out, optional] A pointer to the buffer that will receive the decoded samples. +// +// Returns the number of samples actually read. +// +// pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of samples +// seeked. +drflac_uint64 drflac_read_s32(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int32* pBufferOut); + +// Same as drflac_read_s32(), except outputs samples as 16-bit integer PCM rather than 32-bit. +// +// pFlac [in] The decoder. +// samplesToRead [in] The number of samples to read. +// pBufferOut [out, optional] A pointer to the buffer that will receive the decoded samples. +// +// Returns the number of samples actually read. +// +// pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of samples +// seeked. +// +// Note that this is lossy for streams where the bits per sample is larger than 16. +drflac_uint64 drflac_read_s16(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int16* pBufferOut); + +// Same as drflac_read_s32(), except outputs samples as 32-bit floating-point PCM. +// +// pFlac [in] The decoder. +// samplesToRead [in] The number of samples to read. +// pBufferOut [out, optional] A pointer to the buffer that will receive the decoded samples. +// +// Returns the number of samples actually read. +// +// pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of samples +// seeked. +// +// Note that this should be considered lossy due to the nature of floating point numbers not being able to exactly +// represent every possible number. +drflac_uint64 drflac_read_f32(drflac* pFlac, drflac_uint64 samplesToRead, float* pBufferOut); + +// Seeks to the sample at the given index. +// +// pFlac [in] The decoder. +// sampleIndex [in] The index of the sample to seek to. See notes below. +// +// Returns DRFLAC_TRUE if successful; DRFLAC_FALSE otherwise. +// +// The sample index is based on interleaving. In a stereo stream, for example, the sample at index 0 is the first sample +// in the left channel; the sample at index 1 is the first sample on the right channel, and so on. +// +// When seeking, you will likely want to ensure it's rounded to a multiple of the channel count. You can do this with +// something like drflac_seek_to_sample(pFlac, (mySampleIndex + (mySampleIndex % pFlac->channels))) +drflac_bool32 drflac_seek_to_sample(drflac* pFlac, drflac_uint64 sampleIndex); + + + +#ifndef DR_FLAC_NO_STDIO +// Opens a FLAC decoder from the file at the given path. +// +// filename [in] The path of the file to open, either absolute or relative to the current directory. +// +// Returns a pointer to an object representing the decoder. +// +// Close the decoder with drflac_close(). +// +// This will hold a handle to the file until the decoder is closed with drflac_close(). Some platforms will restrict the +// number of files a process can have open at any given time, so keep this mind if you have many decoders open at the +// same time. +// +// See also: drflac_open(), drflac_open_file_with_metadata(), drflac_close() +drflac* drflac_open_file(const char* filename); + +// Opens a FLAC decoder from the file at the given path and notifies the caller of the metadata chunks (album art, etc.) +// +// Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled. +drflac* drflac_open_file_with_metadata(const char* filename, drflac_meta_proc onMeta, void* pUserData); +#endif + +// Opens a FLAC decoder from a pre-allocated block of memory +// +// This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for +// the lifetime of the decoder. +drflac* drflac_open_memory(const void* data, size_t dataSize); + +// Opens a FLAC decoder from a pre-allocated block of memory and notifies the caller of the metadata chunks (album art, etc.) +// +// Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled. +drflac* drflac_open_memory_with_metadata(const void* data, size_t dataSize, drflac_meta_proc onMeta, void* pUserData); + + + +//// High Level APIs //// + +// Opens a FLAC stream from the given callbacks and fully decodes it in a single operation. The return value is a +// pointer to the sample data as interleaved signed 32-bit PCM. The returned data must be freed with DRFLAC_FREE(). +// +// Sometimes a FLAC file won't keep track of the total sample count. In this situation the function will continuously +// read samples into a dynamically sized buffer on the heap until no samples are left. +// +// Do not call this function on a broadcast type of stream (like internet radio streams and whatnot). +drflac_int32* drflac_open_and_decode_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_s32(), except returns signed 16-bit integer samples. +drflac_int16* drflac_open_and_decode_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_s32(), except returns 32-bit floating-point samples. +float* drflac_open_and_decode_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +#ifndef DR_FLAC_NO_STDIO +// Same as drflac_open_and_decode_s32() except opens the decoder from a file. +drflac_int32* drflac_open_and_decode_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_file_s32(), except returns signed 16-bit integer samples. +drflac_int16* drflac_open_and_decode_file_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_file_f32(), except returns 32-bit floating-point samples. +float* drflac_open_and_decode_file_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); +#endif + +// Same as drflac_open_and_decode_s32() except opens the decoder from a block of memory. +drflac_int32* drflac_open_and_decode_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_memory_s32(), except returns signed 16-bit integer samples. +drflac_int16* drflac_open_and_decode_memory_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_memory_s32(), except returns 32-bit floating-point samples. +float* drflac_open_and_decode_memory_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Frees memory that was allocated internally by dr_flac. +void drflac_free(void* p); + + +// Structure representing an iterator for vorbis comments in a VORBIS_COMMENT metadata block. +typedef struct +{ + drflac_uint32 countRemaining; + const char* pRunningData; +} drflac_vorbis_comment_iterator; + +// Initializes a vorbis comment iterator. This can be used for iterating over the vorbis comments in a VORBIS_COMMENT +// metadata block. +void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments); + +// Goes to the next vorbis comment in the given iterator. If null is returned it means there are no more comments. The +// returned string is NOT null terminated. +const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut); + + +// Structure representing an iterator for cuesheet tracks in a CUESHEET metadata block. +typedef struct +{ + drflac_uint32 countRemaining; + const char* pRunningData; +} drflac_cuesheet_track_iterator; + +// Packing is important on this structure because we map this directly to the raw data within the CUESHEET metadata block. +#pragma pack(4) +typedef struct +{ + drflac_uint64 offset; + drflac_uint8 index; + drflac_uint8 reserved[3]; +} drflac_cuesheet_track_index; +#pragma pack() + +typedef struct +{ + drflac_uint64 offset; + drflac_uint8 trackNumber; + char ISRC[12]; + drflac_bool8 isAudio; + drflac_bool8 preEmphasis; + drflac_uint8 indexCount; + const drflac_cuesheet_track_index* pIndexPoints; +} drflac_cuesheet_track; + +// Initializes a cuesheet track iterator. This can be used for iterating over the cuesheet tracks in a CUESHEET metadata +// block. +void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData); + +// Goes to the next cuesheet track in the given iterator. If DRFLAC_FALSE is returned it means there are no more comments. +drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack); + + + +#ifdef __cplusplus +} +#endif +#endif //dr_flac_h + + +/////////////////////////////////////////////////////////////////////////////// +// +// IMPLEMENTATION +// +/////////////////////////////////////////////////////////////////////////////// +#ifdef DR_FLAC_IMPLEMENTATION +#ifdef __linux__ + #ifndef _BSD_SOURCE + #define _BSD_SOURCE + #endif + #ifndef __USE_BSD + #define __USE_BSD + #endif + #include <endian.h> +#endif + +#include <stdlib.h> +#include <string.h> + +// CPU architecture. +#if defined(__x86_64__) || defined(_M_X64) + #define DRFLAC_X64 +#elif defined(__i386) || defined(_M_IX86) + #define DRFLAC_X86 +#elif defined(__arm__) || defined(_M_ARM) + #define DRFLAC_ARM +#endif + +// Compile-time CPU feature support. +#if !defined(DR_FLAC_NO_SIMD) && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) + #if defined(_MSC_VER) && !defined(__clang__) + #if _MSC_VER >= 1400 + #include <intrin.h> + static void drflac__cpuid(int info[4], int fid) + { + __cpuid(info, fid); + } + #else + #define DRFLAC_NO_CPUID + #endif + #else + #if defined(__GNUC__) || defined(__clang__) + static void drflac__cpuid(int info[4], int fid) + { + // It looks like the -fPIC option uses the ebx register which GCC complains about. We can work around this by just using a different register, the + // specific register of which I'm letting the compiler decide on. The "k" prefix is used to specify a 32-bit register. The {...} syntax is for + // supporting different assembly dialects. + // + // What's basically happening is that we're saving and restoring the ebx register manually. + #if defined(DRFLAC_X86) && defined(__PIC__) + __asm__ __volatile__ ( + "xchg{l} {%%}ebx, %k1;" + "cpuid;" + "xchg{l} {%%}ebx, %k1;" + : "=a"(info[0]), "=&r"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) + ); + #else + __asm__ __volatile__ ( + "cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) + ); + #endif + } + #else + #define DRFLAC_NO_CPUID + #endif + #endif +#else + #define DRFLAC_NO_CPUID +#endif + + +#if defined(_MSC_VER) && _MSC_VER >= 1500 && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) + #define DRFLAC_HAS_LZCNT_INTRINSIC +#elif (defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))) + #define DRFLAC_HAS_LZCNT_INTRINSIC +#elif defined(__clang__) + #if __has_builtin(__builtin_clzll) || __has_builtin(__builtin_clzl) + #define DRFLAC_HAS_LZCNT_INTRINSIC + #endif +#endif + +#if defined(_MSC_VER) && _MSC_VER >= 1300 + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC +#elif defined(__clang__) + #if __has_builtin(__builtin_bswap16) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap32) + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap64) + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC + #endif +#elif defined(__GNUC__) + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC + #endif + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #endif +#endif + + +// Standard library stuff. +#ifndef DRFLAC_ASSERT +#include <assert.h> +#define DRFLAC_ASSERT(expression) assert(expression) +#endif +#ifndef DRFLAC_MALLOC +#define DRFLAC_MALLOC(sz) malloc((sz)) +#endif +#ifndef DRFLAC_REALLOC +#define DRFLAC_REALLOC(p, sz) realloc((p), (sz)) +#endif +#ifndef DRFLAC_FREE +#define DRFLAC_FREE(p) free((p)) +#endif +#ifndef DRFLAC_COPY_MEMORY +#define DRFLAC_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) +#endif +#ifndef DRFLAC_ZERO_MEMORY +#define DRFLAC_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) +#endif + +#define DRFLAC_MAX_SIMD_VECTOR_SIZE 64 // 64 for AVX-512 in the future. + +#ifdef _MSC_VER +#define DRFLAC_INLINE __forceinline +#else +#ifdef __GNUC__ +#define DRFLAC_INLINE inline __attribute__((always_inline)) +#else +#define DRFLAC_INLINE inline +#endif +#endif + +typedef drflac_int32 drflac_result; +#define DRFLAC_SUCCESS 0 +#define DRFLAC_ERROR -1 // A generic error. +#define DRFLAC_INVALID_ARGS -2 +#define DRFLAC_END_OF_STREAM -128 +#define DRFLAC_CRC_MISMATCH -129 + +#define DRFLAC_SUBFRAME_CONSTANT 0 +#define DRFLAC_SUBFRAME_VERBATIM 1 +#define DRFLAC_SUBFRAME_FIXED 8 +#define DRFLAC_SUBFRAME_LPC 32 +#define DRFLAC_SUBFRAME_RESERVED 255 + +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE 0 +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2 1 + +#define DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT 0 +#define DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE 8 +#define DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE 9 +#define DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE 10 + + +#define drflac_align(x, a) ((((x) + (a) - 1) / (a)) * (a)) +#define drflac_assert DRFLAC_ASSERT +#define drflac_copy_memory DRFLAC_COPY_MEMORY +#define drflac_zero_memory DRFLAC_ZERO_MEMORY + + +// CPU caps. +static drflac_bool32 drflac__gIsLZCNTSupported = DRFLAC_FALSE; +#ifndef DRFLAC_NO_CPUID +static drflac_bool32 drflac__gIsSSE42Supported = DRFLAC_FALSE; +static void drflac__init_cpu_caps() +{ + int info[4] = {0}; + + // LZCNT + drflac__cpuid(info, 0x80000001); + drflac__gIsLZCNTSupported = (info[2] & (1 << 5)) != 0; + + // SSE4.2 + drflac__cpuid(info, 1); + drflac__gIsSSE42Supported = (info[2] & (1 << 19)) != 0; +} +#endif + + +//// Endian Management //// +static DRFLAC_INLINE drflac_bool32 drflac__is_little_endian() +{ +#if defined(DRFLAC_X86) || defined(DRFLAC_X64) + return DRFLAC_TRUE; +#else + int n = 1; + return (*(char*)&n) == 1; +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac__swap_endian_uint16(drflac_uint16 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP16_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ushort(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap16(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF00) >> 8) | + ((n & 0x00FF) << 8); +#endif +} + +static DRFLAC_INLINE drflac_uint32 drflac__swap_endian_uint32(drflac_uint32 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP32_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ulong(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap32(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF000000) >> 24) | + ((n & 0x00FF0000) >> 8) | + ((n & 0x0000FF00) << 8) | + ((n & 0x000000FF) << 24); +#endif +} + +static DRFLAC_INLINE drflac_uint64 drflac__swap_endian_uint64(drflac_uint64 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP64_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_uint64(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap64(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & (drflac_uint64)0xFF00000000000000) >> 56) | + ((n & (drflac_uint64)0x00FF000000000000) >> 40) | + ((n & (drflac_uint64)0x0000FF0000000000) >> 24) | + ((n & (drflac_uint64)0x000000FF00000000) >> 8) | + ((n & (drflac_uint64)0x00000000FF000000) << 8) | + ((n & (drflac_uint64)0x0000000000FF0000) << 24) | + ((n & (drflac_uint64)0x000000000000FF00) << 40) | + ((n & (drflac_uint64)0x00000000000000FF) << 56); +#endif +} + + +static DRFLAC_INLINE drflac_uint16 drflac__be2host_16(drflac_uint16 n) +{ +#ifdef __linux__ + return be16toh(n); +#else + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint16(n); + } + + return n; +#endif +} + +static DRFLAC_INLINE drflac_uint32 drflac__be2host_32(drflac_uint32 n) +{ +#ifdef __linux__ + return be32toh(n); +#else + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + + return n; +#endif +} + +static DRFLAC_INLINE drflac_uint64 drflac__be2host_64(drflac_uint64 n) +{ +#ifdef __linux__ + return be64toh(n); +#else + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint64(n); + } + + return n; +#endif +} + + +static DRFLAC_INLINE drflac_uint32 drflac__le2host_32(drflac_uint32 n) +{ +#ifdef __linux__ + return le32toh(n); +#else + if (!drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + + return n; +#endif +} + + +static DRFLAC_INLINE drflac_uint32 drflac__unsynchsafe_32(drflac_uint32 n) +{ + drflac_uint32 result = 0; + result |= (n & 0x7F000000) >> 3; + result |= (n & 0x007F0000) >> 2; + result |= (n & 0x00007F00) >> 1; + result |= (n & 0x0000007F) >> 0; + + return result; +} + + + +// The CRC code below is based on this document: http://zlib.net/crc_v3.txt +static drflac_uint8 drflac__crc8_table[] = { + 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, + 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, + 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, + 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, + 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, + 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A, + 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, + 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, + 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, + 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, + 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, + 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34, + 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, + 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, + 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, + 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3 +}; + +static drflac_uint16 drflac__crc16_table[] = { + 0x0000, 0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011, + 0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027, 0x0022, + 0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D, 0x8077, 0x0072, + 0x0050, 0x8055, 0x805F, 0x005A, 0x804B, 0x004E, 0x0044, 0x8041, + 0x80C3, 0x00C6, 0x00CC, 0x80C9, 0x00D8, 0x80DD, 0x80D7, 0x00D2, + 0x00F0, 0x80F5, 0x80FF, 0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1, + 0x00A0, 0x80A5, 0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1, + 0x8093, 0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082, + 0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197, 0x0192, + 0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE, 0x01A4, 0x81A1, + 0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB, 0x01FE, 0x01F4, 0x81F1, + 0x81D3, 0x01D6, 0x01DC, 0x81D9, 0x01C8, 0x81CD, 0x81C7, 0x01C2, + 0x0140, 0x8145, 0x814F, 0x014A, 0x815B, 0x015E, 0x0154, 0x8151, + 0x8173, 0x0176, 0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162, + 0x8123, 0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132, + 0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104, 0x8101, + 0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D, 0x8317, 0x0312, + 0x0330, 0x8335, 0x833F, 0x033A, 0x832B, 0x032E, 0x0324, 0x8321, + 0x0360, 0x8365, 0x836F, 0x036A, 0x837B, 0x037E, 0x0374, 0x8371, + 0x8353, 0x0356, 0x035C, 0x8359, 0x0348, 0x834D, 0x8347, 0x0342, + 0x03C0, 0x83C5, 0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1, + 0x83F3, 0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2, + 0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7, 0x03B2, + 0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E, 0x0384, 0x8381, + 0x0280, 0x8285, 0x828F, 0x028A, 0x829B, 0x029E, 0x0294, 0x8291, + 0x82B3, 0x02B6, 0x02BC, 0x82B9, 0x02A8, 0x82AD, 0x82A7, 0x02A2, + 0x82E3, 0x02E6, 0x02EC, 0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2, + 0x02D0, 0x82D5, 0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1, + 0x8243, 0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252, + 0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264, 0x8261, + 0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E, 0x0234, 0x8231, + 0x8213, 0x0216, 0x021C, 0x8219, 0x0208, 0x820D, 0x8207, 0x0202 +}; + +static DRFLAC_INLINE drflac_uint8 drflac_crc8_byte(drflac_uint8 crc, drflac_uint8 data) +{ + return drflac__crc8_table[crc ^ data]; +} + +static DRFLAC_INLINE drflac_uint8 drflac_crc8(drflac_uint8 crc, drflac_uint32 data, drflac_uint32 count) +{ + drflac_assert(count <= 32); + +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else +#if 0 + // REFERENCE (use of this implementation requires an explicit flush by doing "drflac_crc8(crc, 0, 8);") + drflac_uint8 p = 0x07; + for (int i = count-1; i >= 0; --i) { + drflac_uint8 bit = (data & (1 << i)) >> i; + if (crc & 0x80) { + crc = ((crc << 1) | bit) ^ p; + } else { + crc = ((crc << 1) | bit); + } + } + return crc; +#else + drflac_uint32 wholeBytes = count >> 3; + drflac_uint32 leftoverBits = count - (wholeBytes*8); + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + drflac_uint64 leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + case 4: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc8_table[(crc >> (8 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16_byte(drflac_uint16 crc, drflac_uint8 data) +{ + return (crc << 8) ^ drflac__crc16_table[(drflac_uint8)(crc >> 8) ^ data]; +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16_bytes(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 byteCount) +{ + switch (byteCount) + { +#ifdef DRFLAC_64BIT + case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF)); + case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF)); + case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF)); + case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF)); +#endif + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF)); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF)); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF)); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF)); + } + + return crc; +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16__32bit(drflac_uint16 crc, drflac_uint32 data, drflac_uint32 count) +{ + drflac_assert(count <= 64); + +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else +#if 0 + // REFERENCE (use of this implementation requires an explicit flush by doing "drflac_crc16(crc, 0, 16);") + drflac_uint16 p = 0x8005; + for (int i = count-1; i >= 0; --i) { + drflac_uint16 bit = (data & (1ULL << i)) >> i; + if (r & 0x8000) { + r = ((r << 1) | bit) ^ p; + } else { + r = ((r << 1) | bit); + } + } + + return crc; +#else + drflac_uint32 wholeBytes = count >> 3; + drflac_uint32 leftoverBits = count - (wholeBytes*8); + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + drflac_uint64 leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + default: + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16__64bit(drflac_uint16 crc, drflac_uint64 data, drflac_uint32 count) +{ + drflac_assert(count <= 64); + +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else + drflac_uint32 wholeBytes = count >> 3; + drflac_uint32 leftoverBits = count - (wholeBytes*8); + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + drflac_uint64 leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + default: + case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0xFF00000000000000 << leftoverBits)) >> (56 + leftoverBits))); + case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x00FF000000000000 << leftoverBits)) >> (48 + leftoverBits))); + case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x0000FF0000000000 << leftoverBits)) >> (40 + leftoverBits))); + case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x000000FF00000000 << leftoverBits)) >> (32 + leftoverBits))); + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x00000000FF000000 << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x0000000000FF0000 << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x000000000000FF00 << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x00000000000000FF << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +} + + +static DRFLAC_INLINE drflac_uint16 drflac_crc16(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 count) +{ +#ifdef DRFLAC_64BIT + return drflac_crc16__64bit(crc, data, count); +#else + return drflac_crc16__32bit(crc, data, count); +#endif +} + + +#ifdef DRFLAC_64BIT +#define drflac__be2host__cache_line drflac__be2host_64 +#else +#define drflac__be2host__cache_line drflac__be2host_32 +#endif + +// BIT READING ATTEMPT #2 +// +// This uses a 32- or 64-bit bit-shifted cache - as bits are read, the cache is shifted such that the first valid bit is sitting +// on the most significant bit. It uses the notion of an L1 and L2 cache (borrowed from CPU architecture), where the L1 cache +// is a 32- or 64-bit unsigned integer (depending on whether or not a 32- or 64-bit build is being compiled) and the L2 is an +// array of "cache lines", with each cache line being the same size as the L1. The L2 is a buffer of about 4KB and is where data +// from onRead() is read into. +#define DRFLAC_CACHE_L1_SIZE_BYTES(bs) (sizeof((bs)->cache)) +#define DRFLAC_CACHE_L1_SIZE_BITS(bs) (sizeof((bs)->cache)*8) +#define DRFLAC_CACHE_L1_BITS_REMAINING(bs) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (bs)->consumedBits) +#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~((~(drflac_cache_t)0) >> (_bitCount))) +#define DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (_bitCount)) +#define DRFLAC_CACHE_L1_SELECT(bs, _bitCount) (((bs)->cache) & DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount)) +#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount))) +#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, _bitCount)(DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> (DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)) & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1))) +#define DRFLAC_CACHE_L2_SIZE_BYTES(bs) (sizeof((bs)->cacheL2)) +#define DRFLAC_CACHE_L2_LINE_COUNT(bs) (DRFLAC_CACHE_L2_SIZE_BYTES(bs) / sizeof((bs)->cacheL2[0])) +#define DRFLAC_CACHE_L2_LINES_REMAINING(bs) (DRFLAC_CACHE_L2_LINE_COUNT(bs) - (bs)->nextL2Line) + + +#ifndef DR_FLAC_NO_CRC +static DRFLAC_INLINE void drflac__reset_crc16(drflac_bs* bs) +{ + bs->crc16 = 0; + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; +} + +static DRFLAC_INLINE void drflac__update_crc16(drflac_bs* bs) +{ + bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache, DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bs->crc16CacheIgnoredBytes); + bs->crc16CacheIgnoredBytes = 0; +} + +static DRFLAC_INLINE drflac_uint16 drflac__flush_crc16(drflac_bs* bs) +{ + // We should never be flushing in a situation where we are not aligned on a byte boundary. + drflac_assert((DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7) == 0); + + // The bits that were read from the L1 cache need to be accumulated. The number of bytes needing to be accumulated is determined + // by the number of bits that have been consumed. + if (DRFLAC_CACHE_L1_BITS_REMAINING(bs) == 0) { + drflac__update_crc16(bs); + } else { + // We only accumulate the consumed bits. + bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache >> DRFLAC_CACHE_L1_BITS_REMAINING(bs), (bs->consumedBits >> 3) - bs->crc16CacheIgnoredBytes); + + // The bits that we just accumulated should never be accumulated again. We need to keep track of how many bytes were accumulated + // so we can handle that later. + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; + } + + return bs->crc16; +} +#endif + +static DRFLAC_INLINE drflac_bool32 drflac__reload_l1_cache_from_l2(drflac_bs* bs) +{ + // Fast path. Try loading straight from L2. + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } + + // If we get here it means we've run out of data in the L2 cache. We'll need to fetch more from the client, if there's + // any left. + if (bs->unalignedByteCount > 0) { + return DRFLAC_FALSE; // If we have any unaligned bytes it means there's no more aligned bytes left in the client. + } + + size_t bytesRead = bs->onRead(bs->pUserData, bs->cacheL2, DRFLAC_CACHE_L2_SIZE_BYTES(bs)); + + bs->nextL2Line = 0; + if (bytesRead == DRFLAC_CACHE_L2_SIZE_BYTES(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } + + + // If we get here it means we were unable to retrieve enough data to fill the entire L2 cache. It probably + // means we've just reached the end of the file. We need to move the valid data down to the end of the buffer + // and adjust the index of the next line accordingly. Also keep in mind that the L2 cache must be aligned to + // the size of the L1 so we'll need to seek backwards by any misaligned bytes. + size_t alignedL1LineCount = bytesRead / DRFLAC_CACHE_L1_SIZE_BYTES(bs); + + // We need to keep track of any unaligned bytes for later use. + bs->unalignedByteCount = bytesRead - (alignedL1LineCount * DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + if (bs->unalignedByteCount > 0) { + bs->unalignedCache = bs->cacheL2[alignedL1LineCount]; + } + + if (alignedL1LineCount > 0) { + size_t offset = DRFLAC_CACHE_L2_LINE_COUNT(bs) - alignedL1LineCount; + for (size_t i = alignedL1LineCount; i > 0; --i) { + bs->cacheL2[i-1 + offset] = bs->cacheL2[i-1]; + } + + bs->nextL2Line = (drflac_uint32)offset; + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } else { + // If we get into this branch it means we weren't able to load any L1-aligned data. + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); + return DRFLAC_FALSE; + } +} + +static drflac_bool32 drflac__reload_cache(drflac_bs* bs) +{ +#ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); +#endif + + // Fast path. Try just moving the next value in the L2 cache to the L1 cache. + if (drflac__reload_l1_cache_from_l2(bs)) { + bs->cache = drflac__be2host__cache_line(bs->cache); + bs->consumedBits = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; +#endif + return DRFLAC_TRUE; + } + + // Slow path. + + // If we get here it means we have failed to load the L1 cache from the L2. Likely we've just reached the end of the stream and the last + // few bytes did not meet the alignment requirements for the L2 cache. In this case we need to fall back to a slower path and read the + // data from the unaligned cache. + size_t bytesRead = bs->unalignedByteCount; + if (bytesRead == 0) { + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); // <-- The stream has been exhausted, so marked the bits as consumed. + return DRFLAC_FALSE; + } + + drflac_assert(bytesRead < DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + bs->consumedBits = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bytesRead) * 8; + + bs->cache = drflac__be2host__cache_line(bs->unalignedCache); + bs->cache &= DRFLAC_CACHE_L1_SELECTION_MASK(DRFLAC_CACHE_L1_BITS_REMAINING(bs)); // <-- Make sure the consumed bits are always set to zero. Other parts of the library depend on this property. + bs->unalignedByteCount = 0; // <-- At this point the unaligned bytes have been moved into the cache and we thus have no more unaligned bytes. + +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache >> bs->consumedBits; + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; +#endif + return DRFLAC_TRUE; +} + +static void drflac__reset_cache(drflac_bs* bs) +{ + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); // <-- This clears the L2 cache. + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); // <-- This clears the L1 cache. + bs->cache = 0; + bs->unalignedByteCount = 0; // <-- This clears the trailing unaligned bytes. + bs->unalignedCache = 0; + +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = 0; + bs->crc16CacheIgnoredBytes = 0; +#endif +} + + +static DRFLAC_INLINE drflac_bool32 drflac__read_uint32(drflac_bs* bs, unsigned int bitCount, drflac_uint32* pResultOut) +{ + drflac_assert(bs != NULL); + drflac_assert(pResultOut != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 32); + + if (bs->consumedBits == DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + if (bitCount <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + // If we want to load all 32-bits from a 32-bit cache we need to do it slightly differently because we can't do + // a 32-bit shift on a 32-bit integer. This will never be the case on 64-bit caches, so we can have a slightly + // more optimal solution for this. +#ifdef DRFLAC_64BIT + *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); + bs->consumedBits += bitCount; + bs->cache <<= bitCount; +#else + if (bitCount < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); + bs->consumedBits += bitCount; + bs->cache <<= bitCount; + } else { + // Cannot shift by 32-bits, so need to do it differently. + *pResultOut = (drflac_uint32)bs->cache; + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); + bs->cache = 0; + } +#endif + + return DRFLAC_TRUE; + } else { + // It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. + drflac_uint32 bitCountHi = DRFLAC_CACHE_L1_BITS_REMAINING(bs); + drflac_uint32 bitCountLo = bitCount - bitCountHi; + drflac_uint32 resultHi = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountHi); + + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + *pResultOut = (resultHi << bitCountLo) | (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo); + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac__read_int32(drflac_bs* bs, unsigned int bitCount, drflac_int32* pResult) +{ + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 32); + + drflac_uint32 result; + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + drflac_uint32 signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + + *pResult = (drflac_int32)result; + return DRFLAC_TRUE; +} + +#ifdef DRFLAC_64BIT +static drflac_bool32 drflac__read_uint64(drflac_bs* bs, unsigned int bitCount, drflac_uint64* pResultOut) +{ + drflac_assert(bitCount <= 64); + drflac_assert(bitCount > 32); + + drflac_uint32 resultHi; + if (!drflac__read_uint32(bs, bitCount - 32, &resultHi)) { + return DRFLAC_FALSE; + } + + drflac_uint32 resultLo; + if (!drflac__read_uint32(bs, 32, &resultLo)) { + return DRFLAC_FALSE; + } + + *pResultOut = (((drflac_uint64)resultHi) << 32) | ((drflac_uint64)resultLo); + return DRFLAC_TRUE; +} +#endif + +// Function below is unused, but leaving it here in case I need to quickly add it again. +#if 0 +static drflac_bool32 drflac__read_int64(drflac_bs* bs, unsigned int bitCount, drflac_int64* pResultOut) +{ + drflac_assert(bitCount <= 64); + + drflac_uint64 result; + if (!drflac__read_uint64(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + drflac_uint64 signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + + *pResultOut = (drflac_int64)result; + return DRFLAC_TRUE; +} +#endif + +static drflac_bool32 drflac__read_uint16(drflac_bs* bs, unsigned int bitCount, drflac_uint16* pResult) +{ + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 16); + + drflac_uint32 result; + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_uint16)result; + return DRFLAC_TRUE; +} + +#if 0 +static drflac_bool32 drflac__read_int16(drflac_bs* bs, unsigned int bitCount, drflac_int16* pResult) +{ + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 16); + + drflac_int32 result; + if (!drflac__read_int32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_int16)result; + return DRFLAC_TRUE; +} +#endif + +static drflac_bool32 drflac__read_uint8(drflac_bs* bs, unsigned int bitCount, drflac_uint8* pResult) +{ + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 8); + + drflac_uint32 result; + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_uint8)result; + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__read_int8(drflac_bs* bs, unsigned int bitCount, drflac_int8* pResult) +{ + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 8); + + drflac_int32 result; + if (!drflac__read_int32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_int8)result; + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__seek_bits(drflac_bs* bs, size_t bitsToSeek) +{ + if (bitsToSeek <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + bs->consumedBits += (drflac_uint32)bitsToSeek; + bs->cache <<= bitsToSeek; + return DRFLAC_TRUE; + } else { + // It straddles the cached data. This function isn't called too frequently so I'm favouring simplicity here. + bitsToSeek -= DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->consumedBits += DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->cache = 0; + + // Simple case. Seek in groups of the same number as bits that fit within a cache line. +#ifdef DRFLAC_64BIT + while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + drflac_uint64 bin; + if (!drflac__read_uint64(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); + } +#else + while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + drflac_uint32 bin; + if (!drflac__read_uint32(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); + } +#endif + + // Whole leftover bytes. + while (bitsToSeek >= 8) { + drflac_uint8 bin; + if (!drflac__read_uint8(bs, 8, &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= 8; + } + + // Leftover bits. + if (bitsToSeek > 0) { + drflac_uint8 bin; + if (!drflac__read_uint8(bs, (drflac_uint32)bitsToSeek, &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek = 0; // <-- Necessary for the assert below. + } + + drflac_assert(bitsToSeek == 0); + return DRFLAC_TRUE; + } +} + + +// This function moves the bit streamer to the first bit after the sync code (bit 15 of the of the frame header). It will also update the CRC-16. +static drflac_bool32 drflac__find_and_seek_to_next_sync_code(drflac_bs* bs) +{ + drflac_assert(bs != NULL); + + // The sync code is always aligned to 8 bits. This is convenient for us because it means we can do byte-aligned movements. The first + // thing to do is align to the next byte. + if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { + return DRFLAC_FALSE; + } + + for (;;) { +#ifndef DR_FLAC_NO_CRC + drflac__reset_crc16(bs); +#endif + + drflac_uint8 hi; + if (!drflac__read_uint8(bs, 8, &hi)) { + return DRFLAC_FALSE; + } + + if (hi == 0xFF) { + drflac_uint8 lo; + if (!drflac__read_uint8(bs, 6, &lo)) { + return DRFLAC_FALSE; + } + + if (lo == 0x3E) { + return DRFLAC_TRUE; + } else { + if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { + return DRFLAC_FALSE; + } + } + } + } + + // Should never get here. + //return DRFLAC_FALSE; +} + + +#if !defined(DR_FLAC_NO_SIMD) && defined(DRFLAC_HAS_LZCNT_INTRINSIC) +#define DRFLAC_IMPLEMENT_CLZ_LZCNT +#endif +#if defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(DRFLAC_X64) || defined(DRFLAC_X86)) +#define DRFLAC_IMPLEMENT_CLZ_MSVC +#endif + +static DRFLAC_INLINE drflac_uint32 drflac__clz_software(drflac_cache_t x) +{ + static drflac_uint32 clz_table_4[] = { + 0, + 4, + 3, 3, + 2, 2, 2, 2, + 1, 1, 1, 1, 1, 1, 1, 1 + }; + + drflac_uint32 n = clz_table_4[x >> (sizeof(x)*8 - 4)]; + if (n == 0) { +#ifdef DRFLAC_64BIT + if ((x & 0xFFFFFFFF00000000ULL) == 0) { n = 32; x <<= 32; } + if ((x & 0xFFFF000000000000ULL) == 0) { n += 16; x <<= 16; } + if ((x & 0xFF00000000000000ULL) == 0) { n += 8; x <<= 8; } + if ((x & 0xF000000000000000ULL) == 0) { n += 4; x <<= 4; } +#else + if ((x & 0xFFFF0000) == 0) { n = 16; x <<= 16; } + if ((x & 0xFF000000) == 0) { n += 8; x <<= 8; } + if ((x & 0xF0000000) == 0) { n += 4; x <<= 4; } +#endif + n += clz_table_4[x >> (sizeof(x)*8 - 4)]; + } + + return n - 1; +} + +#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT +static DRFLAC_INLINE drflac_bool32 drflac__is_lzcnt_supported() +{ + // If the compiler itself does not support the intrinsic then we'll need to return false. +#ifdef DRFLAC_HAS_LZCNT_INTRINSIC + return drflac__gIsLZCNTSupported; +#else + return DRFLAC_FALSE; +#endif +} + +static DRFLAC_INLINE drflac_uint32 drflac__clz_lzcnt(drflac_cache_t x) +{ +#if defined(_MSC_VER) && !defined(__clang__) + #ifdef DRFLAC_64BIT + return (drflac_uint32)__lzcnt64(x); + #else + return (drflac_uint32)__lzcnt(x); + #endif +#else + #if defined(__GNUC__) || defined(__clang__) + #ifdef DRFLAC_64BIT + return (drflac_uint32)__builtin_clzll((unsigned long long)x); + #else + return (drflac_uint32)__builtin_clzl((unsigned long)x); + #endif + #else + // Unsupported compiler. + #error "This compiler does not support the lzcnt intrinsic." + #endif +#endif +} +#endif + +#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC +#include <intrin.h> // For BitScanReverse(). + +static DRFLAC_INLINE drflac_uint32 drflac__clz_msvc(drflac_cache_t x) +{ + drflac_uint32 n; +#ifdef DRFLAC_64BIT + _BitScanReverse64((unsigned long*)&n, x); +#else + _BitScanReverse((unsigned long*)&n, x); +#endif + return sizeof(x)*8 - n - 1; +} +#endif + +static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x) +{ + // This function assumes at least one bit is set. Checking for 0 needs to be done at a higher level, outside this function. +#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT + if (drflac__is_lzcnt_supported()) { + return drflac__clz_lzcnt(x); + } else +#endif + { +#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC + return drflac__clz_msvc(x); +#else + return drflac__clz_software(x); +#endif + } +} + + +static inline drflac_bool32 drflac__seek_past_next_set_bit(drflac_bs* bs, unsigned int* pOffsetOut) +{ + drflac_uint32 zeroCounter = 0; + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + drflac_uint32 setBitOffsetPlus1 = drflac__clz(bs->cache); + setBitOffsetPlus1 += 1; + + bs->consumedBits += setBitOffsetPlus1; + bs->cache <<= setBitOffsetPlus1; + + *pOffsetOut = zeroCounter + setBitOffsetPlus1 - 1; + return DRFLAC_TRUE; +} + + + +static drflac_bool32 drflac__seek_to_byte(drflac_bs* bs, drflac_uint64 offsetFromStart) +{ + drflac_assert(bs != NULL); + drflac_assert(offsetFromStart > 0); + + // Seeking from the start is not quite as trivial as it sounds because the onSeek callback takes a signed 32-bit integer (which + // is intentional because it simplifies the implementation of the onSeek callbacks), however offsetFromStart is unsigned 64-bit. + // To resolve we just need to do an initial seek from the start, and then a series of offset seeks to make up the remainder. + if (offsetFromStart > 0x7FFFFFFF) { + drflac_uint64 bytesRemaining = offsetFromStart; + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + + while (bytesRemaining > 0x7FFFFFFF) { + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + } + + if (bytesRemaining > 0) { + if (!bs->onSeek(bs->pUserData, (int)bytesRemaining, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!bs->onSeek(bs->pUserData, (int)offsetFromStart, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + } + + // The cache should be reset to force a reload of fresh data from the client. + drflac__reset_cache(bs); + return DRFLAC_TRUE; +} + + +static drflac_result drflac__read_utf8_coded_number(drflac_bs* bs, drflac_uint64* pNumberOut, drflac_uint8* pCRCOut) +{ + drflac_assert(bs != NULL); + drflac_assert(pNumberOut != NULL); + + drflac_uint8 crc = *pCRCOut; + + unsigned char utf8[7] = {0}; + if (!drflac__read_uint8(bs, 8, utf8)) { + *pNumberOut = 0; + return DRFLAC_END_OF_STREAM; + } + crc = drflac_crc8(crc, utf8[0], 8); + + if ((utf8[0] & 0x80) == 0) { + *pNumberOut = utf8[0]; + *pCRCOut = crc; + return DRFLAC_SUCCESS; + } + + int byteCount = 1; + if ((utf8[0] & 0xE0) == 0xC0) { + byteCount = 2; + } else if ((utf8[0] & 0xF0) == 0xE0) { + byteCount = 3; + } else if ((utf8[0] & 0xF8) == 0xF0) { + byteCount = 4; + } else if ((utf8[0] & 0xFC) == 0xF8) { + byteCount = 5; + } else if ((utf8[0] & 0xFE) == 0xFC) { + byteCount = 6; + } else if ((utf8[0] & 0xFF) == 0xFE) { + byteCount = 7; + } else { + *pNumberOut = 0; + return DRFLAC_CRC_MISMATCH; // Bad UTF-8 encoding. + } + + // Read extra bytes. + drflac_assert(byteCount > 1); + + drflac_uint64 result = (drflac_uint64)(utf8[0] & (0xFF >> (byteCount + 1))); + for (int i = 1; i < byteCount; ++i) { + if (!drflac__read_uint8(bs, 8, utf8 + i)) { + *pNumberOut = 0; + return DRFLAC_END_OF_STREAM; + } + crc = drflac_crc8(crc, utf8[i], 8); + + result = (result << 6) | (utf8[i] & 0x3F); + } + + *pNumberOut = result; + *pCRCOut = crc; + return DRFLAC_SUCCESS; +} + + + + +// The next two functions are responsible for calculating the prediction. +// +// When the bits per sample is >16 we need to use 64-bit integer arithmetic because otherwise we'll run out of precision. It's +// safe to assume this will be slower on 32-bit platforms so we use a more optimal solution when the bits per sample is <=16. +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_32(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_assert(order <= 32); + + // 32-bit version. + + // VC++ optimizes this to a single jmp. I've not yet verified this for other compilers. + drflac_int32 prediction = 0; + + switch (order) + { + case 32: prediction += coefficients[31] * pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * pDecodedSamples[- 1]; + } + + return (drflac_int32)(prediction >> shift); +} + +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_64(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_assert(order <= 32); + + // 64-bit version. + + // This method is faster on the 32-bit build when compiling with VC++. See note below. +#ifndef DRFLAC_64BIT + drflac_int64 prediction; + if (order == 8) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + } + else if (order == 7) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + } + else if (order == 3) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + } + else if (order == 6) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + } + else if (order == 5) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + } + else if (order == 4) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + } + else if (order == 12) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + } + else if (order == 2) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + } + else if (order == 1) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + } + else if (order == 10) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + } + else if (order == 9) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + } + else if (order == 11) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + } + else + { + prediction = 0; + for (int j = 0; j < (int)order; ++j) { + prediction += coefficients[j] * (drflac_int64)pDecodedSamples[-j-1]; + } + } +#endif + + // VC++ optimizes this to a single jmp instruction, but only the 64-bit build. The 32-bit build generates less efficient code for some + // reason. The ugly version above is faster so we'll just switch between the two depending on the target platform. +#ifdef DRFLAC_64BIT + drflac_int64 prediction = 0; + + switch (order) + { + case 32: prediction += coefficients[31] * (drflac_int64)pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * (drflac_int64)pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * (drflac_int64)pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * (drflac_int64)pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * (drflac_int64)pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * (drflac_int64)pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * (drflac_int64)pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * (drflac_int64)pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * (drflac_int64)pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * (drflac_int64)pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * (drflac_int64)pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * (drflac_int64)pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * (drflac_int64)pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * (drflac_int64)pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * (drflac_int64)pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * (drflac_int64)pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * (drflac_int64)pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * (drflac_int64)pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * (drflac_int64)pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * (drflac_int64)pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * (drflac_int64)pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * (drflac_int64)pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * (drflac_int64)pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * (drflac_int64)pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * (drflac_int64)pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * (drflac_int64)pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * (drflac_int64)pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1]; + } +#endif + + return (drflac_int32)(prediction >> shift); +} + +#if 0 +// Reference implementation for reading and decoding samples with residual. This is intentionally left unoptimized for the +// sake of readability and should only be used as a reference. +static drflac_bool32 drflac__decode_samples_with_residual__rice__reference(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(pSamplesOut != NULL); + + for (drflac_uint32 i = 0; i < count; ++i) { + drflac_uint32 zeroCounter = 0; + for (;;) { + drflac_uint8 bit; + if (!drflac__read_uint8(bs, 1, &bit)) { + return DRFLAC_FALSE; + } + + if (bit == 0) { + zeroCounter += 1; + } else { + break; + } + } + + drflac_uint32 decodedRice; + if (riceParam > 0) { + if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { + return DRFLAC_FALSE; + } + } else { + decodedRice = 0; + } + + decodedRice |= (zeroCounter << riceParam); + if ((decodedRice & 0x01)) { + decodedRice = ~(decodedRice >> 1); + } else { + decodedRice = (decodedRice >> 1); + } + + + if (bitsPerSample > 16) { + pSamplesOut[i] = decodedRice + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] = decodedRice + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i); + } + } + + return DRFLAC_TRUE; +} +#endif + +#if 0 +static drflac_bool32 drflac__read_rice_parts__reference(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_uint32 zeroCounter = 0; + for (;;) { + drflac_uint8 bit; + if (!drflac__read_uint8(bs, 1, &bit)) { + return DRFLAC_FALSE; + } + + if (bit == 0) { + zeroCounter += 1; + } else { + break; + } + } + + drflac_uint32 decodedRice; + if (riceParam > 0) { + if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { + return DRFLAC_FALSE; + } + } else { + decodedRice = 0; + } + + *pZeroCounterOut = zeroCounter; + *pRiceParamPartOut = decodedRice; + return DRFLAC_TRUE; +} +#endif + +static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_assert(riceParam > 0); // <-- riceParam should never be 0. drflac__read_rice_parts__param_equals_zero() should be used instead for this case. + + drflac_cache_t riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParam); + + drflac_uint32 zeroCounter = 0; + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + drflac_uint32 setBitOffsetPlus1 = drflac__clz(bs->cache); + zeroCounter += setBitOffsetPlus1; + setBitOffsetPlus1 += 1; + + + drflac_uint32 riceParamPart; + drflac_uint32 riceLength = setBitOffsetPlus1 + riceParam; + if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + riceParamPart = (drflac_uint32)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceLength)); + + bs->consumedBits += riceLength; + bs->cache <<= riceLength; + } else { + bs->consumedBits += riceLength; + bs->cache <<= setBitOffsetPlus1 & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1); // <-- Equivalent to "if (setBitOffsetPlus1 < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { bs->cache <<= setBitOffsetPlus1; }" + + // It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. + drflac_uint32 bitCountLo = bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs); + drflac_cache_t resultHi = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, riceParam); // <-- Use DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE() if ever this function allows riceParam=0. + + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { +#ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); +#endif + bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs->consumedBits = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; +#endif + } else { + // Slow path. We need to fetch more data from the client. + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + riceParamPart = (drflac_uint32)(resultHi | DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, bitCountLo)); + + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + } + + *pZeroCounterOut = zeroCounter; + *pRiceParamPartOut = riceParamPart; + return DRFLAC_TRUE; +} + +static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts__param_equals_zero(drflac_bs* bs, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_cache_t riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(0); + + drflac_uint32 zeroCounter = 0; + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + drflac_uint32 setBitOffsetPlus1 = drflac__clz(bs->cache); + zeroCounter += setBitOffsetPlus1; + setBitOffsetPlus1 += 1; + + + drflac_uint32 riceParamPart; + drflac_uint32 riceLength = setBitOffsetPlus1; + if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + riceParamPart = (drflac_uint32)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceLength)); + + bs->consumedBits += riceLength; + bs->cache <<= riceLength; + } else { + // It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. + drflac_uint32 bitCountLo = riceLength + bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs); + + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { +#ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); +#endif + bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs->consumedBits = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; +#endif + } else { + // Slow path. We need to fetch more data from the client. + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + riceParamPart = (drflac_uint32)(DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, bitCountLo)); + + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + } + + *pZeroCounterOut = zeroCounter; + *pRiceParamPartOut = riceParamPart; + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__decode_samples_with_residual__rice__simple(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(pSamplesOut != NULL); + + static drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + + drflac_uint32 zeroCountPart0; + drflac_uint32 zeroCountPart1; + drflac_uint32 zeroCountPart2; + drflac_uint32 zeroCountPart3; + drflac_uint32 riceParamPart0; + drflac_uint32 riceParamPart1; + drflac_uint32 riceParamPart2; + drflac_uint32 riceParamPart3; + drflac_uint32 i4 = 0; + drflac_uint32 count4 = count >> 2; + while (i4 < count4) { + // Rice extraction. + if (!drflac__read_rice_parts(bs, riceParam, &zeroCountPart0, &riceParamPart0) || + !drflac__read_rice_parts(bs, riceParam, &zeroCountPart1, &riceParamPart1) || + !drflac__read_rice_parts(bs, riceParam, &zeroCountPart2, &riceParamPart2) || + !drflac__read_rice_parts(bs, riceParam, &zeroCountPart3, &riceParamPart3)) { + return DRFLAC_FALSE; + } + + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart1 |= (zeroCountPart1 << riceParam); + riceParamPart2 |= (zeroCountPart2 << riceParam); + riceParamPart3 |= (zeroCountPart3 << riceParam); + + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01]; + riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01]; + riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01]; + + if (bitsPerSample > 16) { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 3); + } else { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 3); + } + + i4 += 1; + pSamplesOut += 4; + } + + drflac_uint32 i = i4 << 2; + while (i < count) { + // Rice extraction. + if (!drflac__read_rice_parts(bs, riceParam, &zeroCountPart0, &riceParamPart0)) { + return DRFLAC_FALSE; + } + + // Rice reconstruction. + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + //riceParamPart0 = (riceParamPart0 >> 1) ^ (~(riceParamPart0 & 0x01) + 1); + + // Sample reconstruction. + if (bitsPerSample > 16) { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0); + } else { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0); + } + + i += 1; + pSamplesOut += 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__rice__param_equals_zero(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(pSamplesOut != NULL); + + static drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + + drflac_uint32 zeroCountPart0; + drflac_uint32 zeroCountPart1; + drflac_uint32 zeroCountPart2; + drflac_uint32 zeroCountPart3; + drflac_uint32 riceParamPart0; + drflac_uint32 riceParamPart1; + drflac_uint32 riceParamPart2; + drflac_uint32 riceParamPart3; + drflac_uint32 i4 = 0; + drflac_uint32 count4 = count >> 2; + while (i4 < count4) { + // Rice extraction. + if (!drflac__read_rice_parts__param_equals_zero(bs, &zeroCountPart0, &riceParamPart0) || + !drflac__read_rice_parts__param_equals_zero(bs, &zeroCountPart1, &riceParamPart1) || + !drflac__read_rice_parts__param_equals_zero(bs, &zeroCountPart2, &riceParamPart2) || + !drflac__read_rice_parts__param_equals_zero(bs, &zeroCountPart3, &riceParamPart3)) { + return DRFLAC_FALSE; + } + + riceParamPart0 |= zeroCountPart0; + riceParamPart1 |= zeroCountPart1; + riceParamPart2 |= zeroCountPart2; + riceParamPart3 |= zeroCountPart3; + + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01]; + riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01]; + riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01]; + + if (bitsPerSample > 16) { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 3); + } else { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 3); + } + + i4 += 1; + pSamplesOut += 4; + } + + drflac_uint32 i = i4 << 2; + while (i < count) { + // Rice extraction. + if (!drflac__read_rice_parts__param_equals_zero(bs, &zeroCountPart0, &riceParamPart0)) { + return DRFLAC_FALSE; + } + + // Rice reconstruction. + riceParamPart0 |= zeroCountPart0; + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + + // Sample reconstruction. + if (bitsPerSample > 16) { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0); + } else { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0); + } + + i += 1; + pSamplesOut += 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__rice(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ +#if 0 + return drflac__decode_samples_with_residual__rice__reference(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); +#else + if (riceParam != 0) { + return drflac__decode_samples_with_residual__rice__simple(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + } else { + return drflac__decode_samples_with_residual__rice__param_equals_zero(bs, bitsPerSample, count, order, shift, coefficients, pSamplesOut); + } +#endif +} + +// Reads and seeks past a string of residual values as Rice codes. The decoder should be sitting on the first bit of the Rice codes. +static drflac_bool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam) +{ + drflac_assert(bs != NULL); + drflac_assert(count > 0); + + drflac_uint32 zeroCountPart; + drflac_uint32 riceParamPart; + + if (riceParam != 0) { + for (drflac_uint32 i = 0; i < count; ++i) { + if (!drflac__read_rice_parts(bs, riceParam, &zeroCountPart, &riceParamPart)) { + return DRFLAC_FALSE; + } + } + } else { + for (drflac_uint32 i = 0; i < count; ++i) { + if (!drflac__read_rice_parts__param_equals_zero(bs, &zeroCountPart, &riceParamPart)) { + return DRFLAC_FALSE; + } + } + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__unencoded(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 unencodedBitsPerSample, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(unencodedBitsPerSample <= 31); // <-- unencodedBitsPerSample is a 5 bit number, so cannot exceed 31. + drflac_assert(pSamplesOut != NULL); + + for (unsigned int i = 0; i < count; ++i) { + if (unencodedBitsPerSample > 0) { + if (!drflac__read_int32(bs, unencodedBitsPerSample, pSamplesOut + i)) { + return DRFLAC_FALSE; + } + } else { + pSamplesOut[i] = 0; + } + + if (bitsPerSample > 16) { + pSamplesOut[i] += drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] += drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i); + } + } + + return DRFLAC_TRUE; +} + + +// Reads and decodes the residual for the sub-frame the decoder is currently sitting on. This function should be called +// when the decoder is sitting at the very start of the RESIDUAL block. The first <order> residuals will be ignored. The +// <blockSize> and <order> parameters are used to determine how many residual values need to be decoded. +static drflac_bool32 drflac__decode_samples_with_residual(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 blockSize, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_assert(bs != NULL); + drflac_assert(blockSize != 0); + drflac_assert(pDecodedSamples != NULL); // <-- Should we allow NULL, in which case we just seek past the residual rather than do a full decode? + + drflac_uint8 residualMethod; + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DRFLAC_FALSE; + } + + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DRFLAC_FALSE; // Unknown or unsupported residual coding method. + } + + // Ignore the first <order> values. + pDecodedSamples += order; + + + drflac_uint8 partitionOrder; + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DRFLAC_FALSE; + } + + // From the FLAC spec: + // The Rice partition order in a Rice-coded residual section must be less than or equal to 8. + if (partitionOrder > 8) { + return DRFLAC_FALSE; + } + + // Validation check. + if ((blockSize / (1 << partitionOrder)) <= order) { + return DRFLAC_FALSE; + } + + drflac_uint32 samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + drflac_uint32 partitionsRemaining = (1 << partitionOrder); + for (;;) { + drflac_uint8 riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 15) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 31) { + riceParam = 0xFF; + } + } + + if (riceParam != 0xFF) { + if (!drflac__decode_samples_with_residual__rice(bs, bitsPerSample, samplesInPartition, riceParam, order, shift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + } else { + unsigned char unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DRFLAC_FALSE; + } + + if (!drflac__decode_samples_with_residual__unencoded(bs, bitsPerSample, samplesInPartition, unencodedBitsPerSample, order, shift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + } + + pDecodedSamples += samplesInPartition; + + + if (partitionsRemaining == 1) { + break; + } + + partitionsRemaining -= 1; + + if (partitionOrder != 0) { + samplesInPartition = blockSize / (1 << partitionOrder); + } + } + + return DRFLAC_TRUE; +} + +// Reads and seeks past the residual for the sub-frame the decoder is currently sitting on. This function should be called +// when the decoder is sitting at the very start of the RESIDUAL block. The first <order> residuals will be set to 0. The +// <blockSize> and <order> parameters are used to determine how many residual values need to be decoded. +static drflac_bool32 drflac__read_and_seek_residual(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 order) +{ + drflac_assert(bs != NULL); + drflac_assert(blockSize != 0); + + drflac_uint8 residualMethod; + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DRFLAC_FALSE; + } + + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DRFLAC_FALSE; // Unknown or unsupported residual coding method. + } + + drflac_uint8 partitionOrder; + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DRFLAC_FALSE; + } + + // From the FLAC spec: + // The Rice partition order in a Rice-coded residual section must be less than or equal to 8. + if (partitionOrder > 8) { + return DRFLAC_FALSE; + } + + // Validation check. + if ((blockSize / (1 << partitionOrder)) <= order) { + return DRFLAC_FALSE; + } + + drflac_uint32 samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + drflac_uint32 partitionsRemaining = (1 << partitionOrder); + for (;;) + { + drflac_uint8 riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 15) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 31) { + riceParam = 0xFF; + } + } + + if (riceParam != 0xFF) { + if (!drflac__read_and_seek_residual__rice(bs, samplesInPartition, riceParam)) { + return DRFLAC_FALSE; + } + } else { + unsigned char unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DRFLAC_FALSE; + } + + if (!drflac__seek_bits(bs, unencodedBitsPerSample * samplesInPartition)) { + return DRFLAC_FALSE; + } + } + + + if (partitionsRemaining == 1) { + break; + } + + partitionsRemaining -= 1; + samplesInPartition = blockSize / (1 << partitionOrder); + } + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__decode_samples__constant(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_int32* pDecodedSamples) +{ + // Only a single sample needs to be decoded here. + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + // We don't really need to expand this, but it does simplify the process of reading samples. If this becomes a performance issue (unlikely) + // we'll want to look at a more efficient way. + for (drflac_uint32 i = 0; i < blockSize; ++i) { + pDecodedSamples[i] = sample; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__verbatim(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_int32* pDecodedSamples) +{ + for (drflac_uint32 i = 0; i < blockSize; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__fixed(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) +{ + drflac_int32 lpcCoefficientsTable[5][4] = { + {0, 0, 0, 0}, + {1, 0, 0, 0}, + {2, -1, 0, 0}, + {3, -3, 1, 0}, + {4, -6, 4, -1} + }; + + // Warm up samples and coefficients. + for (drflac_uint32 i = 0; i < lpcOrder; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + + if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, 0, lpcCoefficientsTable[lpcOrder], pDecodedSamples)) { + return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__lpc(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) +{ + drflac_uint8 i; + + // Warm up samples. + for (i = 0; i < lpcOrder; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + drflac_uint8 lpcPrecision; + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DRFLAC_FALSE; + } + if (lpcPrecision == 15) { + return DRFLAC_FALSE; // Invalid. + } + lpcPrecision += 1; + + + drflac_int8 lpcShift; + if (!drflac__read_int8(bs, 5, &lpcShift)) { + return DRFLAC_FALSE; + } + + + drflac_int32 coefficients[32]; + for (i = 0; i < lpcOrder; ++i) { + if (!drflac__read_int32(bs, lpcPrecision, coefficients + i)) { + return DRFLAC_FALSE; + } + } + + if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, lpcShift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__read_next_frame_header(drflac_bs* bs, drflac_uint8 streaminfoBitsPerSample, drflac_frame_header* header) +{ + drflac_assert(bs != NULL); + drflac_assert(header != NULL); + + const drflac_uint32 sampleRateTable[12] = {0, 88200, 176400, 192000, 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000}; + const drflac_uint8 bitsPerSampleTable[8] = {0, 8, 12, (drflac_uint8)-1, 16, 20, 24, (drflac_uint8)-1}; // -1 = reserved. + + // Keep looping until we find a valid sync code. + for (;;) { + if (!drflac__find_and_seek_to_next_sync_code(bs)) { + return DRFLAC_FALSE; + } + + drflac_uint8 crc8 = 0xCE; // 0xCE = drflac_crc8(0, 0x3FFE, 14); + + drflac_uint8 reserved = 0; + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DRFLAC_FALSE; + } + if (reserved == 1) { + continue; + } + crc8 = drflac_crc8(crc8, reserved, 1); + + + drflac_uint8 blockingStrategy = 0; + if (!drflac__read_uint8(bs, 1, &blockingStrategy)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, blockingStrategy, 1); + + + drflac_uint8 blockSize = 0; + if (!drflac__read_uint8(bs, 4, &blockSize)) { + return DRFLAC_FALSE; + } + if (blockSize == 0) { + continue; + } + crc8 = drflac_crc8(crc8, blockSize, 4); + + + drflac_uint8 sampleRate = 0; + if (!drflac__read_uint8(bs, 4, &sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, sampleRate, 4); + + + drflac_uint8 channelAssignment = 0; + if (!drflac__read_uint8(bs, 4, &channelAssignment)) { + return DRFLAC_FALSE; + } + if (channelAssignment > 10) { + continue; + } + crc8 = drflac_crc8(crc8, channelAssignment, 4); + + + drflac_uint8 bitsPerSample = 0; + if (!drflac__read_uint8(bs, 3, &bitsPerSample)) { + return DRFLAC_FALSE; + } + if (bitsPerSample == 3 || bitsPerSample == 7) { + continue; + } + crc8 = drflac_crc8(crc8, bitsPerSample, 3); + + + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DRFLAC_FALSE; + } + if (reserved == 1) { + continue; + } + crc8 = drflac_crc8(crc8, reserved, 1); + + + drflac_bool32 isVariableBlockSize = blockingStrategy == 1; + if (isVariableBlockSize) { + drflac_uint64 sampleNumber; + drflac_result result = drflac__read_utf8_coded_number(bs, &sampleNumber, &crc8); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_END_OF_STREAM) { + return DRFLAC_FALSE; + } else { + continue; + } + } + header->frameNumber = 0; + header->sampleNumber = sampleNumber; + } else { + drflac_uint64 frameNumber = 0; + drflac_result result = drflac__read_utf8_coded_number(bs, &frameNumber, &crc8); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_END_OF_STREAM) { + return DRFLAC_FALSE; + } else { + continue; + } + } + header->frameNumber = (drflac_uint32)frameNumber; // <-- Safe cast. + header->sampleNumber = 0; + } + + + if (blockSize == 1) { + header->blockSize = 192; + } else if (blockSize >= 2 && blockSize <= 5) { + header->blockSize = 576 * (1 << (blockSize - 2)); + } else if (blockSize == 6) { + if (!drflac__read_uint16(bs, 8, &header->blockSize)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->blockSize, 8); + header->blockSize += 1; + } else if (blockSize == 7) { + if (!drflac__read_uint16(bs, 16, &header->blockSize)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->blockSize, 16); + header->blockSize += 1; + } else { + header->blockSize = 256 * (1 << (blockSize - 8)); + } + + + if (sampleRate <= 11) { + header->sampleRate = sampleRateTable[sampleRate]; + } else if (sampleRate == 12) { + if (!drflac__read_uint32(bs, 8, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 8); + header->sampleRate *= 1000; + } else if (sampleRate == 13) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 16); + } else if (sampleRate == 14) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 16); + header->sampleRate *= 10; + } else { + continue; // Invalid. Assume an invalid block. + } + + + header->channelAssignment = channelAssignment; + + header->bitsPerSample = bitsPerSampleTable[bitsPerSample]; + if (header->bitsPerSample == 0) { + header->bitsPerSample = streaminfoBitsPerSample; + } + + if (!drflac__read_uint8(bs, 8, &header->crc8)) { + return DRFLAC_FALSE; + } + +#ifndef DR_FLAC_NO_CRC + if (header->crc8 != crc8) { + continue; // CRC mismatch. Loop back to the top and find the next sync code. + } +#endif + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac__read_subframe_header(drflac_bs* bs, drflac_subframe* pSubframe) +{ + drflac_uint8 header; + if (!drflac__read_uint8(bs, 8, &header)) { + return DRFLAC_FALSE; + } + + // First bit should always be 0. + if ((header & 0x80) != 0) { + return DRFLAC_FALSE; + } + + int type = (header & 0x7E) >> 1; + if (type == 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_CONSTANT; + } else if (type == 1) { + pSubframe->subframeType = DRFLAC_SUBFRAME_VERBATIM; + } else { + if ((type & 0x20) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_LPC; + pSubframe->lpcOrder = (type & 0x1F) + 1; + } else if ((type & 0x08) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_FIXED; + pSubframe->lpcOrder = (type & 0x07); + if (pSubframe->lpcOrder > 4) { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + pSubframe->lpcOrder = 0; + } + } else { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + } + } + + if (pSubframe->subframeType == DRFLAC_SUBFRAME_RESERVED) { + return DRFLAC_FALSE; + } + + // Wasted bits per sample. + pSubframe->wastedBitsPerSample = 0; + if ((header & 0x01) == 1) { + unsigned int wastedBitsPerSample; + if (!drflac__seek_past_next_set_bit(bs, &wastedBitsPerSample)) { + return DRFLAC_FALSE; + } + pSubframe->wastedBitsPerSample = (unsigned char)wastedBitsPerSample + 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex, drflac_int32* pDecodedSamplesOut) +{ + drflac_assert(bs != NULL); + drflac_assert(frame != NULL); + + drflac_subframe* pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DRFLAC_FALSE; + } + + // Side channels require an extra bit per sample. Took a while to figure that one out... + pSubframe->bitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + pSubframe->bitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + pSubframe->bitsPerSample += 1; + } + + // Need to handle wasted bits per sample. + if (pSubframe->wastedBitsPerSample >= pSubframe->bitsPerSample) { + return DRFLAC_FALSE; + } + pSubframe->bitsPerSample -= pSubframe->wastedBitsPerSample; + pSubframe->pDecodedSamples = pDecodedSamplesOut; + + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + drflac__decode_samples__constant(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_VERBATIM: + { + drflac__decode_samples__verbatim(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_FIXED: + { + drflac__decode_samples__fixed(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->lpcOrder, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_LPC: + { + drflac__decode_samples__lpc(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->lpcOrder, pSubframe->pDecodedSamples); + } break; + + default: return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__seek_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex) +{ + drflac_assert(bs != NULL); + drflac_assert(frame != NULL); + + drflac_subframe* pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DRFLAC_FALSE; + } + + // Side channels require an extra bit per sample. Took a while to figure that one out... + pSubframe->bitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + pSubframe->bitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + pSubframe->bitsPerSample += 1; + } + + // Need to handle wasted bits per sample. + if (pSubframe->wastedBitsPerSample >= pSubframe->bitsPerSample) { + return DRFLAC_FALSE; + } + pSubframe->bitsPerSample -= pSubframe->wastedBitsPerSample; + pSubframe->pDecodedSamples = NULL; + + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + if (!drflac__seek_bits(bs, pSubframe->bitsPerSample)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_VERBATIM: + { + unsigned int bitsToSeek = frame->header.blockSize * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_FIXED: + { + unsigned int bitsToSeek = pSubframe->lpcOrder * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_and_seek_residual(bs, frame->header.blockSize, pSubframe->lpcOrder)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_LPC: + { + unsigned int bitsToSeek = pSubframe->lpcOrder * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + unsigned char lpcPrecision; + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DRFLAC_FALSE; + } + if (lpcPrecision == 15) { + return DRFLAC_FALSE; // Invalid. + } + lpcPrecision += 1; + + + bitsToSeek = (pSubframe->lpcOrder * lpcPrecision) + 5; // +5 for shift. + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_and_seek_residual(bs, frame->header.blockSize, pSubframe->lpcOrder)) { + return DRFLAC_FALSE; + } + } break; + + default: return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + + +static DRFLAC_INLINE drflac_uint8 drflac__get_channel_count_from_channel_assignment(drflac_int8 channelAssignment) +{ + drflac_assert(channelAssignment <= 10); + + drflac_uint8 lookup[] = {1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2}; + return lookup[channelAssignment]; +} + +static drflac_result drflac__decode_frame(drflac* pFlac) +{ + // This function should be called while the stream is sitting on the first byte after the frame header. + drflac_zero_memory(pFlac->currentFrame.subframes, sizeof(pFlac->currentFrame.subframes)); + + // The frame block size must never be larger than the maximum block size defined by the FLAC stream. + if (pFlac->currentFrame.header.blockSize > pFlac->maxBlockSize) { + return DRFLAC_ERROR; + } + + // The number of channels in the frame must match the channel count from the STREAMINFO block. + int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + if (channelCount != (int)pFlac->channels) { + return DRFLAC_ERROR; + } + + for (int i = 0; i < channelCount; ++i) { + if (!drflac__decode_subframe(&pFlac->bs, &pFlac->currentFrame, i, pFlac->pDecodedSamples + (pFlac->currentFrame.header.blockSize * i))) { + return DRFLAC_ERROR; + } + } + + drflac_uint8 paddingSizeInBits = DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7; + if (paddingSizeInBits > 0) { + drflac_uint8 padding = 0; + if (!drflac__read_uint8(&pFlac->bs, paddingSizeInBits, &padding)) { + return DRFLAC_END_OF_STREAM; + } + } + +#ifndef DR_FLAC_NO_CRC + drflac_uint16 actualCRC16 = drflac__flush_crc16(&pFlac->bs); +#endif + drflac_uint16 desiredCRC16; + if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { + return DRFLAC_END_OF_STREAM; + } + +#ifndef DR_FLAC_NO_CRC + if (actualCRC16 != desiredCRC16) { + return DRFLAC_CRC_MISMATCH; // CRC mismatch. + } +#endif + + pFlac->currentFrame.samplesRemaining = pFlac->currentFrame.header.blockSize * channelCount; + + return DRFLAC_SUCCESS; +} + +static drflac_result drflac__seek_frame(drflac* pFlac) +{ + int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + for (int i = 0; i < channelCount; ++i) { + if (!drflac__seek_subframe(&pFlac->bs, &pFlac->currentFrame, i)) { + return DRFLAC_ERROR; + } + } + + // Padding. + if (!drflac__seek_bits(&pFlac->bs, DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7)) { + return DRFLAC_ERROR; + } + + // CRC. +#ifndef DR_FLAC_NO_CRC + drflac_uint16 actualCRC16 = drflac__flush_crc16(&pFlac->bs); +#endif + drflac_uint16 desiredCRC16; + if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { + return DRFLAC_END_OF_STREAM; + } + +#ifndef DR_FLAC_NO_CRC + if (actualCRC16 != desiredCRC16) { + return DRFLAC_CRC_MISMATCH; // CRC mismatch. + } +#endif + + return DRFLAC_SUCCESS; +} + +static drflac_bool32 drflac__read_and_decode_next_frame(drflac* pFlac) +{ + drflac_assert(pFlac != NULL); + + for (;;) { + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + + drflac_result result = drflac__decode_frame(pFlac); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_CRC_MISMATCH) { + continue; // CRC mismatch. Skip to the next frame. + } else { + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; + } +} + + +static void drflac__get_current_frame_sample_range(drflac* pFlac, drflac_uint64* pFirstSampleInFrameOut, drflac_uint64* pLastSampleInFrameOut) +{ + drflac_assert(pFlac != NULL); + + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + + drflac_uint64 firstSampleInFrame = pFlac->currentFrame.header.sampleNumber; + if (firstSampleInFrame == 0) { + firstSampleInFrame = pFlac->currentFrame.header.frameNumber * pFlac->maxBlockSize*channelCount; + } + + drflac_uint64 lastSampleInFrame = firstSampleInFrame + (pFlac->currentFrame.header.blockSize*channelCount); + if (lastSampleInFrame > 0) { + lastSampleInFrame -= 1; // Needs to be zero based. + } + + if (pFirstSampleInFrameOut) *pFirstSampleInFrameOut = firstSampleInFrame; + if (pLastSampleInFrameOut) *pLastSampleInFrameOut = lastSampleInFrame; +} + +static drflac_bool32 drflac__seek_to_first_frame(drflac* pFlac) +{ + drflac_assert(pFlac != NULL); + + drflac_bool32 result = drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos); + + drflac_zero_memory(&pFlac->currentFrame, sizeof(pFlac->currentFrame)); + pFlac->currentSample = 0; + + return result; +} + +static DRFLAC_INLINE drflac_result drflac__seek_to_next_frame(drflac* pFlac) +{ + // This function should only ever be called while the decoder is sitting on the first byte past the FRAME_HEADER section. + drflac_assert(pFlac != NULL); + return drflac__seek_frame(pFlac); +} + +static drflac_bool32 drflac__seek_to_sample__brute_force(drflac* pFlac, drflac_uint64 sampleIndex) +{ + drflac_assert(pFlac != NULL); + + drflac_bool32 isMidFrame = DRFLAC_FALSE; + + // If we are seeking forward we start from the current position. Otherwise we need to start all the way from the start of the file. + drflac_uint64 runningSampleCount; + if (sampleIndex >= pFlac->currentSample) { + // Seeking forward. Need to seek from the current position. + runningSampleCount = pFlac->currentSample; + + // The frame header for the first frame may not yet have been read. We need to do that if necessary. + if (pFlac->currentSample == 0 && pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } else { + isMidFrame = DRFLAC_TRUE; + } + } else { + // Seeking backwards. Need to seek from the start of the file. + runningSampleCount = 0; + + // Move back to the start. + if (!drflac__seek_to_first_frame(pFlac)) { + return DRFLAC_FALSE; + } + + // Decode the first frame in preparation for sample-exact seeking below. + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } + + // We need to as quickly as possible find the frame that contains the target sample. To do this, we iterate over each frame and inspect its + // header. If based on the header we can determine that the frame contains the sample, we do a full decode of that frame. + for (;;) { + drflac_uint64 firstSampleInFrame = 0; + drflac_uint64 lastSampleInFrame = 0; + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + + drflac_uint64 sampleCountInThisFrame = (lastSampleInFrame - firstSampleInFrame) + 1; + if (sampleIndex < (runningSampleCount + sampleCountInThisFrame)) { + // The sample should be in this frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend + // it never existed and keep iterating. + drflac_uint64 samplesToDecode = sampleIndex - runningSampleCount; + + if (!isMidFrame) { + drflac_result result = drflac__decode_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + // The frame is valid. We just need to skip over some samples to ensure it's sample-exact. + return drflac_read_s32(pFlac, samplesToDecode, NULL) == samplesToDecode; // <-- If this fails, something bad has happened (it should never fail). + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } else { + // We started seeking mid-frame which means we need to skip the frame decoding part. + return drflac_read_s32(pFlac, samplesToDecode, NULL) == samplesToDecode; + } + } else { + // It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + // frame never existed and leave the running sample count untouched. + if (!isMidFrame) { + drflac_result result = drflac__seek_to_next_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningSampleCount += sampleCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } else { + // We started seeking mid-frame which means we need to seek by reading to the end of the frame instead of with + // drflac__seek_to_next_frame() which only works if the decoder is sitting on the byte just after the frame header. + runningSampleCount += pFlac->currentFrame.samplesRemaining; + pFlac->currentFrame.samplesRemaining = 0; + isMidFrame = DRFLAC_FALSE; + } + } + + next_iteration: + // Grab the next frame in preparation for the next iteration. + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } +} + + +static drflac_bool32 drflac__seek_to_sample__seek_table(drflac* pFlac, drflac_uint64 sampleIndex) +{ + drflac_assert(pFlac != NULL); + + if (pFlac->pSeekpoints == NULL || pFlac->seekpointCount == 0) { + return DRFLAC_FALSE; + } + + + drflac_uint32 iClosestSeekpoint = 0; + for (drflac_uint32 iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) { + if (pFlac->pSeekpoints[iSeekpoint].firstSample*pFlac->channels >= sampleIndex) { + break; + } + + iClosestSeekpoint = iSeekpoint; + } + + + drflac_bool32 isMidFrame = DRFLAC_FALSE; + + // At this point we should have found the seekpoint closest to our sample. If we are seeking forward and the closest seekpoint is _before_ the current sample, we + // just seek forward from where we are. Otherwise we start seeking from the seekpoint's first sample. + drflac_uint64 runningSampleCount; + if ((sampleIndex >= pFlac->currentSample) && (pFlac->pSeekpoints[iClosestSeekpoint].firstSample*pFlac->channels <= pFlac->currentSample)) { + // Optimized case. Just seek forward from where we are. + runningSampleCount = pFlac->currentSample; + + // The frame header for the first frame may not yet have been read. We need to do that if necessary. + if (pFlac->currentSample == 0 && pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } else { + isMidFrame = DRFLAC_TRUE; + } + } else { + // Slower case. Seek to the start of the seekpoint and then seek forward from there. + runningSampleCount = pFlac->pSeekpoints[iClosestSeekpoint].firstSample*pFlac->channels; + + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos + pFlac->pSeekpoints[iClosestSeekpoint].frameOffset)) { + return DRFLAC_FALSE; + } + + // Grab the frame the seekpoint is sitting on in preparation for the sample-exact seeking below. + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } + + for (;;) { + drflac_uint64 firstSampleInFrame = 0; + drflac_uint64 lastSampleInFrame = 0; + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + + drflac_uint64 sampleCountInThisFrame = (lastSampleInFrame - firstSampleInFrame) + 1; + if (sampleIndex < (runningSampleCount + sampleCountInThisFrame)) { + // The sample should be in this frame. We need to fully decode it, but if it's an invalid frame (a CRC mismatch) we need to pretend + // it never existed and keep iterating. + drflac_uint64 samplesToDecode = sampleIndex - runningSampleCount; + + if (!isMidFrame) { + drflac_result result = drflac__decode_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + // The frame is valid. We just need to skip over some samples to ensure it's sample-exact. + return drflac_read_s32(pFlac, samplesToDecode, NULL) == samplesToDecode; // <-- If this fails, something bad has happened (it should never fail). + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } else { + // We started seeking mid-frame which means we need to skip the frame decoding part. + return drflac_read_s32(pFlac, samplesToDecode, NULL) == samplesToDecode; + } + } else { + // It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + // frame never existed and leave the running sample count untouched. + if (!isMidFrame) { + drflac_result result = drflac__seek_to_next_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningSampleCount += sampleCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } else { + // We started seeking mid-frame which means we need to seek by reading to the end of the frame instead of with + // drflac__seek_to_next_frame() which only works if the decoder is sitting on the byte just after the frame header. + runningSampleCount += pFlac->currentFrame.samplesRemaining; + pFlac->currentFrame.samplesRemaining = 0; + isMidFrame = DRFLAC_FALSE; + } + } + + next_iteration: + // Grab the next frame in preparation for the next iteration. + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } +} + + +#ifndef DR_FLAC_NO_OGG +typedef struct +{ + drflac_uint8 capturePattern[4]; // Should be "OggS" + drflac_uint8 structureVersion; // Always 0. + drflac_uint8 headerType; + drflac_uint64 granulePosition; + drflac_uint32 serialNumber; + drflac_uint32 sequenceNumber; + drflac_uint32 checksum; + drflac_uint8 segmentCount; + drflac_uint8 segmentTable[255]; +} drflac_ogg_page_header; +#endif + +typedef struct +{ + drflac_read_proc onRead; + drflac_seek_proc onSeek; + drflac_meta_proc onMeta; + drflac_container container; + void* pUserData; + void* pUserDataMD; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint64 totalSampleCount; + drflac_uint16 maxBlockSize; + drflac_uint64 runningFilePos; + drflac_bool32 hasStreamInfoBlock; + drflac_bool32 hasMetadataBlocks; + drflac_bs bs; // <-- A bit streamer is required for loading data during initialization. + drflac_frame_header firstFrameHeader; // <-- The header of the first frame that was read during relaxed initalization. Only set if there is no STREAMINFO block. + +#ifndef DR_FLAC_NO_OGG + drflac_uint32 oggSerial; + drflac_uint64 oggFirstBytePos; + drflac_ogg_page_header oggBosHeader; +#endif +} drflac_init_info; + +static DRFLAC_INLINE void drflac__decode_block_header(drflac_uint32 blockHeader, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) +{ + blockHeader = drflac__be2host_32(blockHeader); + *isLastBlock = (blockHeader & (0x01 << 31)) >> 31; + *blockType = (blockHeader & (0x7F << 24)) >> 24; + *blockSize = (blockHeader & 0xFFFFFF); +} + +static DRFLAC_INLINE drflac_bool32 drflac__read_and_decode_block_header(drflac_read_proc onRead, void* pUserData, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) +{ + drflac_uint32 blockHeader; + if (onRead(pUserData, &blockHeader, 4) != 4) { + return DRFLAC_FALSE; + } + + drflac__decode_block_header(blockHeader, isLastBlock, blockType, blockSize); + return DRFLAC_TRUE; +} + +drflac_bool32 drflac__read_streaminfo(drflac_read_proc onRead, void* pUserData, drflac_streaminfo* pStreamInfo) +{ + // min/max block size. + drflac_uint32 blockSizes; + if (onRead(pUserData, &blockSizes, 4) != 4) { + return DRFLAC_FALSE; + } + + // min/max frame size. + drflac_uint64 frameSizes = 0; + if (onRead(pUserData, &frameSizes, 6) != 6) { + return DRFLAC_FALSE; + } + + // Sample rate, channels, bits per sample and total sample count. + drflac_uint64 importantProps; + if (onRead(pUserData, &importantProps, 8) != 8) { + return DRFLAC_FALSE; + } + + // MD5 + drflac_uint8 md5[16]; + if (onRead(pUserData, md5, sizeof(md5)) != sizeof(md5)) { + return DRFLAC_FALSE; + } + + blockSizes = drflac__be2host_32(blockSizes); + frameSizes = drflac__be2host_64(frameSizes); + importantProps = drflac__be2host_64(importantProps); + + pStreamInfo->minBlockSize = (blockSizes & 0xFFFF0000) >> 16; + pStreamInfo->maxBlockSize = blockSizes & 0x0000FFFF; + pStreamInfo->minFrameSize = (drflac_uint32)((frameSizes & (drflac_uint64)0xFFFFFF0000000000) >> 40); + pStreamInfo->maxFrameSize = (drflac_uint32)((frameSizes & (drflac_uint64)0x000000FFFFFF0000) >> 16); + pStreamInfo->sampleRate = (drflac_uint32)((importantProps & (drflac_uint64)0xFFFFF00000000000) >> 44); + pStreamInfo->channels = (drflac_uint8 )((importantProps & (drflac_uint64)0x00000E0000000000) >> 41) + 1; + pStreamInfo->bitsPerSample = (drflac_uint8 )((importantProps & (drflac_uint64)0x000001F000000000) >> 36) + 1; + pStreamInfo->totalSampleCount = (importantProps & (drflac_uint64)0x0000000FFFFFFFFF) * pStreamInfo->channels; + drflac_copy_memory(pStreamInfo->md5, md5, sizeof(md5)); + + return DRFLAC_TRUE; +} + +drflac_bool32 drflac__read_and_decode_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_uint64* pFirstFramePos, drflac_uint64* pSeektablePos, drflac_uint32* pSeektableSize) +{ + // We want to keep track of the byte position in the stream of the seektable. At the time of calling this function we know that + // we'll be sitting on byte 42. + drflac_uint64 runningFilePos = 42; + drflac_uint64 seektablePos = 0; + drflac_uint32 seektableSize = 0; + + for (;;) { + drflac_uint8 isLastBlock = 0; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + runningFilePos += 4; + + + drflac_metadata metadata; + metadata.type = blockType; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + + switch (blockType) + { + case DRFLAC_METADATA_BLOCK_TYPE_APPLICATION: + { + if (blockSize < 4) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.application.id = drflac__be2host_32(*(drflac_uint32*)pRawData); + metadata.data.application.pData = (const void*)((drflac_uint8*)pRawData + sizeof(drflac_uint32)); + metadata.data.application.dataSize = blockSize - sizeof(drflac_uint32); + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE: + { + seektablePos = runningFilePos; + seektableSize = blockSize; + + if (onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.seektable.seekpointCount = blockSize/sizeof(drflac_seekpoint); + metadata.data.seektable.pSeekpoints = (const drflac_seekpoint*)pRawData; + + // Endian swap. + for (drflac_uint32 iSeekpoint = 0; iSeekpoint < metadata.data.seektable.seekpointCount; ++iSeekpoint) { + drflac_seekpoint* pSeekpoint = (drflac_seekpoint*)pRawData + iSeekpoint; + pSeekpoint->firstSample = drflac__be2host_64(pSeekpoint->firstSample); + pSeekpoint->frameOffset = drflac__be2host_64(pSeekpoint->frameOffset); + pSeekpoint->sampleCount = drflac__be2host_16(pSeekpoint->sampleCount); + } + + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT: + { + if (blockSize < 8) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + const char* pRunningData = (const char*)pRawData; + const char* const pRunningDataEnd = (const char*)pRawData + blockSize; + + metadata.data.vorbis_comment.vendorLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + + // Need space for the rest of the block + if ((pRunningDataEnd - pRunningData) - 4 < (drflac_int64)metadata.data.vorbis_comment.vendorLength) { // <-- Note the order of operations to avoid overflow to a valid value + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + metadata.data.vorbis_comment.vendor = pRunningData; pRunningData += metadata.data.vorbis_comment.vendorLength; + metadata.data.vorbis_comment.commentCount = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + + // Need space for 'commentCount' comments after the block, which at minimum is a drflac_uint32 per comment + if ((pRunningDataEnd - pRunningData) / sizeof(drflac_uint32) < metadata.data.vorbis_comment.commentCount) { // <-- Note the order of operations to avoid overflow to a valid value + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + metadata.data.vorbis_comment.pComments = pRunningData; + + // Check that the comments section is valid before passing it to the callback + for (drflac_uint32 i = 0; i < metadata.data.vorbis_comment.commentCount; ++i) { + if (pRunningDataEnd - pRunningData < 4) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + const drflac_uint32 commentLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + if (pRunningDataEnd - pRunningData < (drflac_int64)commentLength) { // <-- Note the order of operations to avoid overflow to a valid value + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + pRunningData += commentLength; + } + + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_CUESHEET: + { + if (blockSize < 396) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + char* pRunningData = (char*)pRawData; + const char* const pRunningDataEnd = (const char*)pRawData + blockSize; + + drflac_copy_memory(metadata.data.cuesheet.catalog, pRunningData, 128); pRunningData += 128; + metadata.data.cuesheet.leadInSampleCount = drflac__be2host_64(*(const drflac_uint64*)pRunningData); pRunningData += 8; + metadata.data.cuesheet.isCD = (pRunningData[0] & 0x80) != 0; pRunningData += 259; + metadata.data.cuesheet.trackCount = pRunningData[0]; pRunningData += 1; + metadata.data.cuesheet.pTrackData = pRunningData; + + // Check that the cuesheet tracks are valid before passing it to the callback + for (drflac_uint8 i = 0; i < metadata.data.cuesheet.trackCount; ++i) { + if (pRunningDataEnd - pRunningData < 36) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + // Skip to the index point count + pRunningData += 35; + const drflac_uint8 indexCount = pRunningData[0]; pRunningData += 1; + const drflac_uint32 indexPointSize = indexCount * sizeof(drflac_cuesheet_track_index); + if (pRunningDataEnd - pRunningData < (drflac_int64)indexPointSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + // Endian swap. + for (drflac_uint8 index = 0; index < indexCount; ++index) { + drflac_cuesheet_track_index* pTrack = (drflac_cuesheet_track_index*)pRunningData; + pRunningData += sizeof(drflac_cuesheet_track_index); + pTrack->offset = drflac__be2host_64(pTrack->offset); + } + } + + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_PICTURE: + { + if (blockSize < 32) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + const char* pRunningData = (const char*)pRawData; + const char* const pRunningDataEnd = (const char*)pRawData + blockSize; + + metadata.data.picture.type = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.mimeLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + + // Need space for the rest of the block + if ((pRunningDataEnd - pRunningData) - 24 < (drflac_int64)metadata.data.picture.mimeLength) { // <-- Note the order of operations to avoid overflow to a valid value + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + metadata.data.picture.mime = pRunningData; pRunningData += metadata.data.picture.mimeLength; + metadata.data.picture.descriptionLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + + // Need space for the rest of the block + if ((pRunningDataEnd - pRunningData) - 20 < (drflac_int64)metadata.data.picture.descriptionLength) { // <-- Note the order of operations to avoid overflow to a valid value + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + metadata.data.picture.description = pRunningData; pRunningData += metadata.data.picture.descriptionLength; + metadata.data.picture.width = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.height = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.colorDepth = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.indexColorCount = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.pictureDataSize = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.pPictureData = (const drflac_uint8*)pRunningData; + + // Need space for the picture after the block + if (pRunningDataEnd - pRunningData < (drflac_int64)metadata.data.picture.pictureDataSize) { // <-- Note the order of operations to avoid overflow to a valid value + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_PADDING: + { + if (onMeta) { + metadata.data.padding.unused = 0; + + // Padding doesn't have anything meaningful in it, so just skip over it, but make sure the caller is aware of it by firing the callback. + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; // An error occurred while seeking. Attempt to recover by treating this as the last block which will in turn terminate the loop. + } else { + onMeta(pUserDataMD, &metadata); + } + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_INVALID: + { + // Invalid chunk. Just skip over this one. + if (onMeta) { + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; // An error occurred while seeking. Attempt to recover by treating this as the last block which will in turn terminate the loop. + } + } + } break; + + default: + { + // It's an unknown chunk, but not necessarily invalid. There's a chance more metadata blocks might be defined later on, so we + // can at the very least report the chunk to the application and let it look at the raw data. + if (onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + } + + // If we're not handling metadata, just skip over the block. If we are, it will have been handled earlier in the switch statement above. + if (onMeta == NULL && blockSize > 0) { + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; + } + } + + runningFilePos += blockSize; + if (isLastBlock) { + break; + } + } + + *pSeektablePos = seektablePos; + *pSeektableSize = seektableSize; + *pFirstFramePos = runningFilePos; + + return DRFLAC_TRUE; +} + +drflac_bool32 drflac__init_private__native(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) +{ + (void)onSeek; + + // Pre: The bit stream should be sitting just past the 4-byte id header. + + pInit->container = drflac_container_native; + + // The first metadata block should be the STREAMINFO block. + drflac_uint8 isLastBlock; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + if (!relaxed) { + // We're opening in strict mode and the first block is not the STREAMINFO block. Error. + return DRFLAC_FALSE; + } else { + // Relaxed mode. To open from here we need to just find the first frame and set the sample rate, etc. to whatever is defined + // for that frame. + pInit->hasStreamInfoBlock = DRFLAC_FALSE; + pInit->hasMetadataBlocks = DRFLAC_FALSE; + + if (!drflac__read_next_frame_header(&pInit->bs, 0, &pInit->firstFrameHeader)) { + return DRFLAC_FALSE; // Couldn't find a frame. + } + + if (pInit->firstFrameHeader.bitsPerSample == 0) { + return DRFLAC_FALSE; // Failed to initialize because the first frame depends on the STREAMINFO block, which does not exist. + } + + pInit->sampleRate = pInit->firstFrameHeader.sampleRate; + pInit->channels = drflac__get_channel_count_from_channel_assignment(pInit->firstFrameHeader.channelAssignment); + pInit->bitsPerSample = pInit->firstFrameHeader.bitsPerSample; + pInit->maxBlockSize = 65535; // <-- See notes here: https://xiph.org/flac/format.html#metadata_block_streaminfo + return DRFLAC_TRUE; + } + } else { + drflac_streaminfo streaminfo; + if (!drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + return DRFLAC_FALSE; + } + + pInit->hasStreamInfoBlock = DRFLAC_TRUE; + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalSampleCount = streaminfo.totalSampleCount; + pInit->maxBlockSize = streaminfo.maxBlockSize; // Don't care about the min block size - only the max (used for determining the size of the memory allocation). + pInit->hasMetadataBlocks = !isLastBlock; + + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + + return DRFLAC_TRUE; + } +} + +#ifndef DR_FLAC_NO_OGG +#define DRFLAC_OGG_MAX_PAGE_SIZE 65307 +#define DRFLAC_OGG_CAPTURE_PATTERN_CRC32 1605413199 // CRC-32 of "OggS". + +typedef enum +{ + drflac_ogg_recover_on_crc_mismatch, + drflac_ogg_fail_on_crc_mismatch +} drflac_ogg_crc_mismatch_recovery; + + +static drflac_uint32 drflac__crc32_table[] = { + 0x00000000L, 0x04C11DB7L, 0x09823B6EL, 0x0D4326D9L, + 0x130476DCL, 0x17C56B6BL, 0x1A864DB2L, 0x1E475005L, + 0x2608EDB8L, 0x22C9F00FL, 0x2F8AD6D6L, 0x2B4BCB61L, + 0x350C9B64L, 0x31CD86D3L, 0x3C8EA00AL, 0x384FBDBDL, + 0x4C11DB70L, 0x48D0C6C7L, 0x4593E01EL, 0x4152FDA9L, + 0x5F15ADACL, 0x5BD4B01BL, 0x569796C2L, 0x52568B75L, + 0x6A1936C8L, 0x6ED82B7FL, 0x639B0DA6L, 0x675A1011L, + 0x791D4014L, 0x7DDC5DA3L, 0x709F7B7AL, 0x745E66CDL, + 0x9823B6E0L, 0x9CE2AB57L, 0x91A18D8EL, 0x95609039L, + 0x8B27C03CL, 0x8FE6DD8BL, 0x82A5FB52L, 0x8664E6E5L, + 0xBE2B5B58L, 0xBAEA46EFL, 0xB7A96036L, 0xB3687D81L, + 0xAD2F2D84L, 0xA9EE3033L, 0xA4AD16EAL, 0xA06C0B5DL, + 0xD4326D90L, 0xD0F37027L, 0xDDB056FEL, 0xD9714B49L, + 0xC7361B4CL, 0xC3F706FBL, 0xCEB42022L, 0xCA753D95L, + 0xF23A8028L, 0xF6FB9D9FL, 0xFBB8BB46L, 0xFF79A6F1L, + 0xE13EF6F4L, 0xE5FFEB43L, 0xE8BCCD9AL, 0xEC7DD02DL, + 0x34867077L, 0x30476DC0L, 0x3D044B19L, 0x39C556AEL, + 0x278206ABL, 0x23431B1CL, 0x2E003DC5L, 0x2AC12072L, + 0x128E9DCFL, 0x164F8078L, 0x1B0CA6A1L, 0x1FCDBB16L, + 0x018AEB13L, 0x054BF6A4L, 0x0808D07DL, 0x0CC9CDCAL, + 0x7897AB07L, 0x7C56B6B0L, 0x71159069L, 0x75D48DDEL, + 0x6B93DDDBL, 0x6F52C06CL, 0x6211E6B5L, 0x66D0FB02L, + 0x5E9F46BFL, 0x5A5E5B08L, 0x571D7DD1L, 0x53DC6066L, + 0x4D9B3063L, 0x495A2DD4L, 0x44190B0DL, 0x40D816BAL, + 0xACA5C697L, 0xA864DB20L, 0xA527FDF9L, 0xA1E6E04EL, + 0xBFA1B04BL, 0xBB60ADFCL, 0xB6238B25L, 0xB2E29692L, + 0x8AAD2B2FL, 0x8E6C3698L, 0x832F1041L, 0x87EE0DF6L, + 0x99A95DF3L, 0x9D684044L, 0x902B669DL, 0x94EA7B2AL, + 0xE0B41DE7L, 0xE4750050L, 0xE9362689L, 0xEDF73B3EL, + 0xF3B06B3BL, 0xF771768CL, 0xFA325055L, 0xFEF34DE2L, + 0xC6BCF05FL, 0xC27DEDE8L, 0xCF3ECB31L, 0xCBFFD686L, + 0xD5B88683L, 0xD1799B34L, 0xDC3ABDEDL, 0xD8FBA05AL, + 0x690CE0EEL, 0x6DCDFD59L, 0x608EDB80L, 0x644FC637L, + 0x7A089632L, 0x7EC98B85L, 0x738AAD5CL, 0x774BB0EBL, + 0x4F040D56L, 0x4BC510E1L, 0x46863638L, 0x42472B8FL, + 0x5C007B8AL, 0x58C1663DL, 0x558240E4L, 0x51435D53L, + 0x251D3B9EL, 0x21DC2629L, 0x2C9F00F0L, 0x285E1D47L, + 0x36194D42L, 0x32D850F5L, 0x3F9B762CL, 0x3B5A6B9BL, + 0x0315D626L, 0x07D4CB91L, 0x0A97ED48L, 0x0E56F0FFL, + 0x1011A0FAL, 0x14D0BD4DL, 0x19939B94L, 0x1D528623L, + 0xF12F560EL, 0xF5EE4BB9L, 0xF8AD6D60L, 0xFC6C70D7L, + 0xE22B20D2L, 0xE6EA3D65L, 0xEBA91BBCL, 0xEF68060BL, + 0xD727BBB6L, 0xD3E6A601L, 0xDEA580D8L, 0xDA649D6FL, + 0xC423CD6AL, 0xC0E2D0DDL, 0xCDA1F604L, 0xC960EBB3L, + 0xBD3E8D7EL, 0xB9FF90C9L, 0xB4BCB610L, 0xB07DABA7L, + 0xAE3AFBA2L, 0xAAFBE615L, 0xA7B8C0CCL, 0xA379DD7BL, + 0x9B3660C6L, 0x9FF77D71L, 0x92B45BA8L, 0x9675461FL, + 0x8832161AL, 0x8CF30BADL, 0x81B02D74L, 0x857130C3L, + 0x5D8A9099L, 0x594B8D2EL, 0x5408ABF7L, 0x50C9B640L, + 0x4E8EE645L, 0x4A4FFBF2L, 0x470CDD2BL, 0x43CDC09CL, + 0x7B827D21L, 0x7F436096L, 0x7200464FL, 0x76C15BF8L, + 0x68860BFDL, 0x6C47164AL, 0x61043093L, 0x65C52D24L, + 0x119B4BE9L, 0x155A565EL, 0x18197087L, 0x1CD86D30L, + 0x029F3D35L, 0x065E2082L, 0x0B1D065BL, 0x0FDC1BECL, + 0x3793A651L, 0x3352BBE6L, 0x3E119D3FL, 0x3AD08088L, + 0x2497D08DL, 0x2056CD3AL, 0x2D15EBE3L, 0x29D4F654L, + 0xC5A92679L, 0xC1683BCEL, 0xCC2B1D17L, 0xC8EA00A0L, + 0xD6AD50A5L, 0xD26C4D12L, 0xDF2F6BCBL, 0xDBEE767CL, + 0xE3A1CBC1L, 0xE760D676L, 0xEA23F0AFL, 0xEEE2ED18L, + 0xF0A5BD1DL, 0xF464A0AAL, 0xF9278673L, 0xFDE69BC4L, + 0x89B8FD09L, 0x8D79E0BEL, 0x803AC667L, 0x84FBDBD0L, + 0x9ABC8BD5L, 0x9E7D9662L, 0x933EB0BBL, 0x97FFAD0CL, + 0xAFB010B1L, 0xAB710D06L, 0xA6322BDFL, 0xA2F33668L, + 0xBCB4666DL, 0xB8757BDAL, 0xB5365D03L, 0xB1F740B4L +}; + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_byte(drflac_uint32 crc32, drflac_uint8 data) +{ +#ifndef DR_FLAC_NO_CRC + return (crc32 << 8) ^ drflac__crc32_table[(drflac_uint8)((crc32 >> 24) & 0xFF) ^ data]; +#else + (void)data; + return crc32; +#endif +} + +#if 0 +static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint32(drflac_uint32 crc32, drflac_uint32 data) +{ + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 24) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 16) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 8) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 0) & 0xFF)); + return crc32; +} + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint64(drflac_uint32 crc32, drflac_uint64 data) +{ + crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 32) & 0xFFFFFFFF)); + crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 0) & 0xFFFFFFFF)); + return crc32; +} +#endif + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_buffer(drflac_uint32 crc32, drflac_uint8* pData, drflac_uint32 dataSize) +{ + // This can be optimized. + for (drflac_uint32 i = 0; i < dataSize; ++i) { + crc32 = drflac_crc32_byte(crc32, pData[i]); + } + return crc32; +} + + +static DRFLAC_INLINE drflac_bool32 drflac_ogg__is_capture_pattern(drflac_uint8 pattern[4]) +{ + return pattern[0] == 'O' && pattern[1] == 'g' && pattern[2] == 'g' && pattern[3] == 'S'; +} + +static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_header_size(drflac_ogg_page_header* pHeader) +{ + return 27 + pHeader->segmentCount; +} + +static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_body_size(drflac_ogg_page_header* pHeader) +{ + drflac_uint32 pageBodySize = 0; + for (int i = 0; i < pHeader->segmentCount; ++i) { + pageBodySize += pHeader->segmentTable[i]; + } + + return pageBodySize; +} + +drflac_result drflac_ogg__read_page_header_after_capture_pattern(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) +{ + drflac_assert(*pCRC32 == DRFLAC_OGG_CAPTURE_PATTERN_CRC32); + + drflac_uint8 data[23]; + if (onRead(pUserData, data, 23) != 23) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += 23; + + pHeader->structureVersion = data[0]; + pHeader->headerType = data[1]; + drflac_copy_memory(&pHeader->granulePosition, &data[ 2], 8); + drflac_copy_memory(&pHeader->serialNumber, &data[10], 4); + drflac_copy_memory(&pHeader->sequenceNumber, &data[14], 4); + drflac_copy_memory(&pHeader->checksum, &data[18], 4); + pHeader->segmentCount = data[22]; + + // Calculate the CRC. Note that for the calculation the checksum part of the page needs to be set to 0. + data[18] = 0; + data[19] = 0; + data[20] = 0; + data[21] = 0; + + drflac_uint32 i; + for (i = 0; i < 23; ++i) { + *pCRC32 = drflac_crc32_byte(*pCRC32, data[i]); + } + + + if (onRead(pUserData, pHeader->segmentTable, pHeader->segmentCount) != pHeader->segmentCount) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += pHeader->segmentCount; + + for (i = 0; i < pHeader->segmentCount; ++i) { + *pCRC32 = drflac_crc32_byte(*pCRC32, pHeader->segmentTable[i]); + } + + return DRFLAC_SUCCESS; +} + +drflac_result drflac_ogg__read_page_header(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) +{ + *pBytesRead = 0; + + drflac_uint8 id[4]; + if (onRead(pUserData, id, 4) != 4) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += 4; + + // We need to read byte-by-byte until we find the OggS capture pattern. + for (;;) { + if (drflac_ogg__is_capture_pattern(id)) { + *pCRC32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; + + drflac_result result = drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, pHeader, pBytesRead, pCRC32); + if (result == DRFLAC_SUCCESS) { + return DRFLAC_SUCCESS; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; + } else { + return result; + } + } + } else { + // The first 4 bytes did not equal the capture pattern. Read the next byte and try again. + id[0] = id[1]; + id[1] = id[2]; + id[2] = id[3]; + if (onRead(pUserData, &id[3], 1) != 1) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += 1; + } + } +} + + +// The main part of the Ogg encapsulation is the conversion from the physical Ogg bitstream to the native FLAC bitstream. It works +// in three general stages: Ogg Physical Bitstream -> Ogg/FLAC Logical Bitstream -> FLAC Native Bitstream. dr_flac is designed +// in such a way that the core sections assume everything is delivered in native format. Therefore, for each encapsulation type +// dr_flac is supporting there needs to be a layer sitting on top of the onRead and onSeek callbacks that ensures the bits read from +// the physical Ogg bitstream are converted and delivered in native FLAC format. +typedef struct +{ + drflac_read_proc onRead; // The original onRead callback from drflac_open() and family. + drflac_seek_proc onSeek; // The original onSeek callback from drflac_open() and family. + void* pUserData; // The user data passed on onRead and onSeek. This is the user data that was passed on drflac_open() and family. + drflac_uint64 currentBytePos; // The position of the byte we are sitting on in the physical byte stream. Used for efficient seeking. + drflac_uint64 firstBytePos; // The position of the first byte in the physical bitstream. Points to the start of the "OggS" identifier of the FLAC bos page. + drflac_uint32 serialNumber; // The serial number of the FLAC audio pages. This is determined by the initial header page that was read during initialization. + drflac_ogg_page_header bosPageHeader; // Used for seeking. + drflac_ogg_page_header currentPageHeader; + drflac_uint32 bytesRemainingInPage; + drflac_uint32 pageDataSize; + drflac_uint8 pageData[DRFLAC_OGG_MAX_PAGE_SIZE]; +} drflac_oggbs; // oggbs = Ogg Bitstream + +static size_t drflac_oggbs__read_physical(drflac_oggbs* oggbs, void* bufferOut, size_t bytesToRead) +{ + size_t bytesActuallyRead = oggbs->onRead(oggbs->pUserData, bufferOut, bytesToRead); + oggbs->currentBytePos += bytesActuallyRead; + + return bytesActuallyRead; +} + +static drflac_bool32 drflac_oggbs__seek_physical(drflac_oggbs* oggbs, drflac_uint64 offset, drflac_seek_origin origin) +{ + if (origin == drflac_seek_origin_start) { + if (offset <= 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos = offset; + + return DRFLAC_TRUE; + } else { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos = offset; + + return drflac_oggbs__seek_physical(oggbs, offset - 0x7FFFFFFF, drflac_seek_origin_current); + } + } else { + while (offset > 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += 0x7FFFFFFF; + offset -= 0x7FFFFFFF; + } + + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_current)) { // <-- Safe cast thanks to the loop above. + return DRFLAC_FALSE; + } + oggbs->currentBytePos += offset; + + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac_oggbs__goto_next_page(drflac_oggbs* oggbs, drflac_ogg_crc_mismatch_recovery recoveryMethod) +{ + drflac_ogg_page_header header; + for (;;) { + drflac_uint32 crc32 = 0; + drflac_uint32 bytesRead; + if (drflac_ogg__read_page_header(oggbs->onRead, oggbs->pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += bytesRead; + + drflac_uint32 pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize > DRFLAC_OGG_MAX_PAGE_SIZE) { + continue; // Invalid page size. Assume it's corrupted and just move to the next page. + } + + if (header.serialNumber != oggbs->serialNumber) { + // It's not a FLAC page. Skip it. + if (pageBodySize > 0 && !drflac_oggbs__seek_physical(oggbs, pageBodySize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + continue; + } + + + // We need to read the entire page and then do a CRC check on it. If there's a CRC mismatch we need to skip this page. + if (drflac_oggbs__read_physical(oggbs, oggbs->pageData, pageBodySize) != pageBodySize) { + return DRFLAC_FALSE; + } + oggbs->pageDataSize = pageBodySize; + +#ifndef DR_FLAC_NO_CRC + drflac_uint32 actualCRC32 = drflac_crc32_buffer(crc32, oggbs->pageData, oggbs->pageDataSize); + if (actualCRC32 != header.checksum) { + if (recoveryMethod == drflac_ogg_recover_on_crc_mismatch) { + continue; // CRC mismatch. Skip this page. + } else { + // Even though we are failing on a CRC mismatch, we still want our stream to be in a good state. Therefore we + // go to the next valid page to ensure we're in a good state, but return false to let the caller know that the + // seek did not fully complete. + drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch); + return DRFLAC_FALSE; + } + } +#else + (void)recoveryMethod; // <-- Silence a warning. +#endif + + oggbs->currentPageHeader = header; + oggbs->bytesRemainingInPage = pageBodySize; + return DRFLAC_TRUE; + } +} + +// Function below is unused at the moment, but I might be re-adding it later. +#if 0 +static drflac_uint8 drflac_oggbs__get_current_segment_index(drflac_oggbs* oggbs, drflac_uint8* pBytesRemainingInSeg) +{ + drflac_uint32 bytesConsumedInPage = drflac_ogg__get_page_body_size(&oggbs->currentPageHeader) - oggbs->bytesRemainingInPage; + drflac_uint8 iSeg = 0; + drflac_uint32 iByte = 0; + while (iByte < bytesConsumedInPage) { + drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (iByte + segmentSize > bytesConsumedInPage) { + break; + } else { + iSeg += 1; + iByte += segmentSize; + } + } + + *pBytesRemainingInSeg = oggbs->currentPageHeader.segmentTable[iSeg] - (drflac_uint8)(bytesConsumedInPage - iByte); + return iSeg; +} + +static drflac_bool32 drflac_oggbs__seek_to_next_packet(drflac_oggbs* oggbs) +{ + // The current packet ends when we get to the segment with a lacing value of < 255 which is not at the end of a page. + for (;;) { + drflac_bool32 atEndOfPage = DRFLAC_FALSE; + + drflac_uint8 bytesRemainingInSeg; + drflac_uint8 iFirstSeg = drflac_oggbs__get_current_segment_index(oggbs, &bytesRemainingInSeg); + + drflac_uint32 bytesToEndOfPacketOrPage = bytesRemainingInSeg; + for (drflac_uint8 iSeg = iFirstSeg; iSeg < oggbs->currentPageHeader.segmentCount; ++iSeg) { + drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (segmentSize < 255) { + if (iSeg == oggbs->currentPageHeader.segmentCount-1) { + atEndOfPage = DRFLAC_TRUE; + } + + break; + } + + bytesToEndOfPacketOrPage += segmentSize; + } + + // At this point we will have found either the packet or the end of the page. If were at the end of the page we'll + // want to load the next page and keep searching for the end of the packet. + drflac_oggbs__seek_physical(oggbs, bytesToEndOfPacketOrPage, drflac_seek_origin_current); + oggbs->bytesRemainingInPage -= bytesToEndOfPacketOrPage; + + if (atEndOfPage) { + // We're potentially at the next packet, but we need to check the next page first to be sure because the packet may + // straddle pages. + if (!drflac_oggbs__goto_next_page(oggbs)) { + return DRFLAC_FALSE; + } + + // If it's a fresh packet it most likely means we're at the next packet. + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { + return DRFLAC_TRUE; + } + } else { + // We're at the next packet. + return DRFLAC_TRUE; + } + } +} + +static drflac_bool32 drflac_oggbs__seek_to_next_frame(drflac_oggbs* oggbs) +{ + // The bitstream should be sitting on the first byte just after the header of the frame. + + // What we're actually doing here is seeking to the start of the next packet. + return drflac_oggbs__seek_to_next_packet(oggbs); +} +#endif + +static size_t drflac__on_read_ogg(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + drflac_assert(oggbs != NULL); + + drflac_uint8* pRunningBufferOut = (drflac_uint8*)bufferOut; + + // Reading is done page-by-page. If we've run out of bytes in the page we need to move to the next one. + size_t bytesRead = 0; + while (bytesRead < bytesToRead) { + size_t bytesRemainingToRead = bytesToRead - bytesRead; + + if (oggbs->bytesRemainingInPage >= bytesRemainingToRead) { + drflac_copy_memory(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), bytesRemainingToRead); + bytesRead += bytesRemainingToRead; + oggbs->bytesRemainingInPage -= (drflac_uint32)bytesRemainingToRead; + break; + } + + // If we get here it means some of the requested data is contained in the next pages. + if (oggbs->bytesRemainingInPage > 0) { + drflac_copy_memory(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), oggbs->bytesRemainingInPage); + bytesRead += oggbs->bytesRemainingInPage; + pRunningBufferOut += oggbs->bytesRemainingInPage; + oggbs->bytesRemainingInPage = 0; + } + + drflac_assert(bytesRemainingToRead > 0); + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + break; // Failed to go to the next page. Might have simply hit the end of the stream. + } + } + + return bytesRead; +} + +static drflac_bool32 drflac__on_seek_ogg(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + drflac_assert(oggbs != NULL); + drflac_assert(offset >= 0); // <-- Never seek backwards. + + // Seeking is always forward which makes things a lot simpler. + if (origin == drflac_seek_origin_start) { + if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->firstBytePos, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + + return drflac__on_seek_ogg(pUserData, offset, drflac_seek_origin_current); + } + + + drflac_assert(origin == drflac_seek_origin_current); + + int bytesSeeked = 0; + while (bytesSeeked < offset) { + int bytesRemainingToSeek = offset - bytesSeeked; + drflac_assert(bytesRemainingToSeek >= 0); + + if (oggbs->bytesRemainingInPage >= (size_t)bytesRemainingToSeek) { + bytesSeeked += bytesRemainingToSeek; + oggbs->bytesRemainingInPage -= bytesRemainingToSeek; + break; + } + + // If we get here it means some of the requested data is contained in the next pages. + if (oggbs->bytesRemainingInPage > 0) { + bytesSeeked += (int)oggbs->bytesRemainingInPage; + oggbs->bytesRemainingInPage = 0; + } + + drflac_assert(bytesRemainingToSeek > 0); + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { + // Failed to go to the next page. We either hit the end of the stream or had a CRC mismatch. + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; +} + +drflac_bool32 drflac_ogg__seek_to_sample(drflac* pFlac, drflac_uint64 sampleIndex) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + + drflac_uint64 originalBytePos = oggbs->currentBytePos; // For recovery. + + // First seek to the first frame. + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos)) { + return DRFLAC_FALSE; + } + oggbs->bytesRemainingInPage = 0; + + drflac_uint64 runningGranulePosition = 0; + drflac_uint64 runningFrameBytePos = oggbs->currentBytePos; // <-- Points to the OggS identifier. + for (;;) { + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start); + return DRFLAC_FALSE; // Never did find that sample... + } + + runningFrameBytePos = oggbs->currentBytePos - drflac_ogg__get_page_header_size(&oggbs->currentPageHeader) - oggbs->pageDataSize; + if (oggbs->currentPageHeader.granulePosition*pFlac->channels >= sampleIndex) { + break; // The sample is somewhere in the previous page. + } + + + // At this point we know the sample is not in the previous page. It could possibly be in this page. For simplicity we + // disregard any pages that do not begin a fresh packet. + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { // <-- Is it a fresh page? + if (oggbs->currentPageHeader.segmentTable[0] >= 2) { + drflac_uint8 firstBytesInPage[2]; + firstBytesInPage[0] = oggbs->pageData[0]; + firstBytesInPage[1] = oggbs->pageData[1]; + + if ((firstBytesInPage[0] == 0xFF) && (firstBytesInPage[1] & 0xFC) == 0xF8) { // <-- Does the page begin with a frame's sync code? + runningGranulePosition = oggbs->currentPageHeader.granulePosition*pFlac->channels; + } + + continue; + } + } + } + + + // We found the page that that is closest to the sample, so now we need to find it. The first thing to do is seek to the + // start of that page. In the loop above we checked that it was a fresh page which means this page is also the start of + // a new frame. This property means that after we've seeked to the page we can immediately start looping over frames until + // we find the one containing the target sample. + if (!drflac_oggbs__seek_physical(oggbs, runningFrameBytePos, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + + + // At this point we'll be sitting on the first byte of the frame header of the first frame in the page. We just keep + // looping over these frames until we find the one containing the sample we're after. + drflac_uint64 runningSampleCount = runningGranulePosition; + for (;;) { + // There are two ways to find the sample and seek past irrelevant frames: + // 1) Use the native FLAC decoder. + // 2) Use Ogg's framing system. + // + // Both of these options have their own pros and cons. Using the native FLAC decoder is slower because it needs to + // do a full decode of the frame. Using Ogg's framing system is faster, but more complicated and involves some code + // duplication for the decoding of frame headers. + // + // Another thing to consider is that using the Ogg framing system will perform direct seeking of the physical Ogg + // bitstream. This is important to consider because it means we cannot read data from the drflac_bs object using the + // standard drflac__*() APIs because that will read in extra data for its own internal caching which in turn breaks + // the positioning of the read pointer of the physical Ogg bitstream. Therefore, anything that would normally be read + // using the native FLAC decoding APIs, such as drflac__read_next_frame_header(), need to be re-implemented so as to + // avoid the use of the drflac_bs object. + // + // Considering these issues, I have decided to use the slower native FLAC decoding method for the following reasons: + // 1) Seeking is already partially accelerated using Ogg's paging system in the code block above. + // 2) Seeking in an Ogg encapsulated FLAC stream is probably quite uncommon. + // 3) Simplicity. + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + + drflac_uint64 firstSampleInFrame = 0; + drflac_uint64 lastSampleInFrame = 0; + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + + drflac_uint64 sampleCountInThisFrame = (lastSampleInFrame - firstSampleInFrame) + 1; + if (sampleIndex < (runningSampleCount + sampleCountInThisFrame)) { + // The sample should be in this frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend + // it never existed and keep iterating. + drflac_result result = drflac__decode_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + // The frame is valid. We just need to skip over some samples to ensure it's sample-exact. + drflac_uint64 samplesToDecode = (size_t)(sampleIndex - runningSampleCount); // <-- Safe cast because the maximum number of samples in a frame is 65535. + if (samplesToDecode == 0) { + return DRFLAC_TRUE; + } + return drflac_read_s32(pFlac, samplesToDecode, NULL) != 0; // <-- If this fails, something bad has happened (it should never fail). + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } else { + // It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + // frame never existed and leave the running sample count untouched. + drflac_result result = drflac__seek_to_next_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningSampleCount += sampleCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } + } +} + + +drflac_bool32 drflac__init_private__ogg(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) +{ + // Pre: The bit stream should be sitting just past the 4-byte OggS capture pattern. + (void)relaxed; + + pInit->container = drflac_container_ogg; + pInit->oggFirstBytePos = 0; + + // We'll get here if the first 4 bytes of the stream were the OggS capture pattern, however it doesn't necessarily mean the + // stream includes FLAC encoded audio. To check for this we need to scan the beginning-of-stream page markers and check if + // any match the FLAC specification. Important to keep in mind that the stream may be multiplexed. + drflac_ogg_page_header header; + + drflac_uint32 crc32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; + drflac_uint32 bytesRead = 0; + if (drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += bytesRead; + + for (;;) { + // Break if we're past the beginning of stream page. + if ((header.headerType & 0x02) == 0) { + return DRFLAC_FALSE; + } + + + // Check if it's a FLAC header. + int pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize == 51) { // 51 = the lacing value of the FLAC header packet. + // It could be a FLAC page... + drflac_uint32 bytesRemainingInPage = pageBodySize; + + drflac_uint8 packetType; + if (onRead(pUserData, &packetType, 1) != 1) { + return DRFLAC_FALSE; + } + + bytesRemainingInPage -= 1; + if (packetType == 0x7F) { + // Increasingly more likely to be a FLAC page... + drflac_uint8 sig[4]; + if (onRead(pUserData, sig, 4) != 4) { + return DRFLAC_FALSE; + } + + bytesRemainingInPage -= 4; + if (sig[0] == 'F' && sig[1] == 'L' && sig[2] == 'A' && sig[3] == 'C') { + // Almost certainly a FLAC page... + drflac_uint8 mappingVersion[2]; + if (onRead(pUserData, mappingVersion, 2) != 2) { + return DRFLAC_FALSE; + } + + if (mappingVersion[0] != 1) { + return DRFLAC_FALSE; // Only supporting version 1.x of the Ogg mapping. + } + + // The next 2 bytes are the non-audio packets, not including this one. We don't care about this because we're going to + // be handling it in a generic way based on the serial number and packet types. + if (!onSeek(pUserData, 2, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + + // Expecting the native FLAC signature "fLaC". + if (onRead(pUserData, sig, 4) != 4) { + return DRFLAC_FALSE; + } + + if (sig[0] == 'f' && sig[1] == 'L' && sig[2] == 'a' && sig[3] == 'C') { + // The remaining data in the page should be the STREAMINFO block. + drflac_uint8 isLastBlock; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + return DRFLAC_FALSE; // Invalid block type. First block must be the STREAMINFO block. + } + + drflac_streaminfo streaminfo; + if (drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + // Success! + pInit->hasStreamInfoBlock = DRFLAC_TRUE; + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalSampleCount = streaminfo.totalSampleCount; + pInit->maxBlockSize = streaminfo.maxBlockSize; + pInit->hasMetadataBlocks = !isLastBlock; + + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + + pInit->runningFilePos += pageBodySize; + pInit->oggFirstBytePos = pInit->runningFilePos - 79; // Subtracting 79 will place us right on top of the "OggS" identifier of the FLAC bos page. + pInit->oggSerial = header.serialNumber; + pInit->oggBosHeader = header; + break; + } else { + // Failed to read STREAMINFO block. Aww, so close... + return DRFLAC_FALSE; + } + } else { + // Invalid file. + return DRFLAC_FALSE; + } + } else { + // Not a FLAC header. Skip it. + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + // Not a FLAC header. Seek past the entire page and move on to the next. + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!onSeek(pUserData, pageBodySize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + + pInit->runningFilePos += pageBodySize; + + + // Read the header of the next page. + if (drflac_ogg__read_page_header(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += bytesRead; + } + + + // If we get here it means we found a FLAC audio stream. We should be sitting on the first byte of the header of the next page. The next + // packets in the FLAC logical stream contain the metadata. The only thing left to do in the initialization phase for Ogg is to create the + // Ogg bistream object. + pInit->hasMetadataBlocks = DRFLAC_TRUE; // <-- Always have at least VORBIS_COMMENT metadata block. + return DRFLAC_TRUE; +} +#endif + +drflac_bool32 drflac__init_private(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD) +{ + if (pInit == NULL || onRead == NULL || onSeek == NULL) { + return DRFLAC_FALSE; + } + + drflac_zero_memory(pInit, sizeof(*pInit)); + pInit->onRead = onRead; + pInit->onSeek = onSeek; + pInit->onMeta = onMeta; + pInit->container = container; + pInit->pUserData = pUserData; + pInit->pUserDataMD = pUserDataMD; + + pInit->bs.onRead = onRead; + pInit->bs.onSeek = onSeek; + pInit->bs.pUserData = pUserData; + drflac__reset_cache(&pInit->bs); + + + // If the container is explicitly defined then we can try opening in relaxed mode. + drflac_bool32 relaxed = container != drflac_container_unknown; + + drflac_uint8 id[4]; + + // Skip over any ID3 tags. + for (;;) { + if (onRead(pUserData, id, 4) != 4) { + return DRFLAC_FALSE; // Ran out of data. + } + pInit->runningFilePos += 4; + + if (id[0] == 'I' && id[1] == 'D' && id[2] == '3') { + drflac_uint8 header[6]; + if (onRead(pUserData, header, 6) != 6) { + return DRFLAC_FALSE; // Ran out of data. + } + pInit->runningFilePos += 6; + + drflac_uint8 flags = header[1]; + drflac_uint32 headerSize; + drflac_copy_memory(&headerSize, header+2, 4); + headerSize = drflac__unsynchsafe_32(drflac__be2host_32(headerSize)); + if (flags & 0x10) { + headerSize += 10; + } + + if (!onSeek(pUserData, headerSize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; // Failed to seek past the tag. + } + pInit->runningFilePos += headerSize; + } else { + break; + } + } + + if (id[0] == 'f' && id[1] == 'L' && id[2] == 'a' && id[3] == 'C') { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#ifndef DR_FLAC_NO_OGG + if (id[0] == 'O' && id[1] == 'g' && id[2] == 'g' && id[3] == 'S') { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#endif + + // If we get here it means we likely don't have a header. Try opening in relaxed mode, if applicable. + if (relaxed) { + if (container == drflac_container_native) { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#ifndef DR_FLAC_NO_OGG + if (container == drflac_container_ogg) { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#endif + } + + // Unsupported container. + return DRFLAC_FALSE; +} + +void drflac__init_from_info(drflac* pFlac, drflac_init_info* pInit) +{ + drflac_assert(pFlac != NULL); + drflac_assert(pInit != NULL); + + drflac_zero_memory(pFlac, sizeof(*pFlac)); + pFlac->bs = pInit->bs; + pFlac->onMeta = pInit->onMeta; + pFlac->pUserDataMD = pInit->pUserDataMD; + pFlac->maxBlockSize = pInit->maxBlockSize; + pFlac->sampleRate = pInit->sampleRate; + pFlac->channels = (drflac_uint8)pInit->channels; + pFlac->bitsPerSample = (drflac_uint8)pInit->bitsPerSample; + pFlac->totalSampleCount = pInit->totalSampleCount; + pFlac->container = pInit->container; +} + +drflac* drflac_open_with_metadata_private(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD) +{ +#ifndef DRFLAC_NO_CPUID + // CPU support first. + drflac__init_cpu_caps(); +#endif + + drflac_init_info init; + if (!drflac__init_private(&init, onRead, onSeek, onMeta, container, pUserData, pUserDataMD)) { + return NULL; + } + + // The size of the allocation for the drflac object needs to be large enough to fit the following: + // 1) The main members of the drflac structure + // 2) A block of memory large enough to store the decoded samples of the largest frame in the stream + // 3) If the container is Ogg, a drflac_oggbs object + // + // The complicated part of the allocation is making sure there's enough room the decoded samples, taking into consideration + // the different SIMD instruction sets. + drflac_uint32 allocationSize = sizeof(drflac); + + // The allocation size for decoded frames depends on the number of 32-bit integers that fit inside the largest SIMD vector + // we are supporting. + drflac_uint32 wholeSIMDVectorCountPerChannel; + if ((init.maxBlockSize % (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) == 0) { + wholeSIMDVectorCountPerChannel = (init.maxBlockSize / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))); + } else { + wholeSIMDVectorCountPerChannel = (init.maxBlockSize / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) + 1; + } + + drflac_uint32 decodedSamplesAllocationSize = wholeSIMDVectorCountPerChannel * DRFLAC_MAX_SIMD_VECTOR_SIZE * init.channels; + + allocationSize += decodedSamplesAllocationSize; + allocationSize += DRFLAC_MAX_SIMD_VECTOR_SIZE; // Allocate extra bytes to ensure we have enough for alignment. + +#ifndef DR_FLAC_NO_OGG + // There's additional data required for Ogg streams. + drflac_uint32 oggbsAllocationSize = 0; + if (init.container == drflac_container_ogg) { + oggbsAllocationSize = sizeof(drflac_oggbs); + allocationSize += oggbsAllocationSize; + } + + drflac_oggbs oggbs; + drflac_zero_memory(&oggbs, sizeof(oggbs)); + if (init.container == drflac_container_ogg) { + oggbs.onRead = onRead; + oggbs.onSeek = onSeek; + oggbs.pUserData = pUserData; + oggbs.currentBytePos = init.oggFirstBytePos; + oggbs.firstBytePos = init.oggFirstBytePos; + oggbs.serialNumber = init.oggSerial; + oggbs.bosPageHeader = init.oggBosHeader; + oggbs.bytesRemainingInPage = 0; + } +#endif + + // This part is a bit awkward. We need to load the seektable so that it can be referenced in-memory, but I want the drflac object to + // consist of only a single heap allocation. To this, the size of the seek table needs to be known, which we determine when reading + // and decoding the metadata. + drflac_uint64 firstFramePos = 42; // <-- We know we are at byte 42 at this point. + drflac_uint64 seektablePos = 0; + drflac_uint32 seektableSize = 0; + if (init.hasMetadataBlocks) { + drflac_read_proc onReadOverride = onRead; + drflac_seek_proc onSeekOverride = onSeek; + void* pUserDataOverride = pUserData; + +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + onReadOverride = drflac__on_read_ogg; + onSeekOverride = drflac__on_seek_ogg; + pUserDataOverride = (void*)&oggbs; + } +#endif + + if (!drflac__read_and_decode_metadata(onReadOverride, onSeekOverride, onMeta, pUserDataOverride, pUserDataMD, &firstFramePos, &seektablePos, &seektableSize)) { + return NULL; + } + + allocationSize += seektableSize; + } + + + drflac* pFlac = (drflac*)DRFLAC_MALLOC(allocationSize); + drflac__init_from_info(pFlac, &init); + pFlac->pDecodedSamples = (drflac_int32*)drflac_align((size_t)pFlac->pExtraData, DRFLAC_MAX_SIMD_VECTOR_SIZE); + +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + drflac_oggbs* pInternalOggbs = (drflac_oggbs*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize + seektableSize); + *pInternalOggbs = oggbs; + + // The Ogg bistream needs to be layered on top of the original bitstream. + pFlac->bs.onRead = drflac__on_read_ogg; + pFlac->bs.onSeek = drflac__on_seek_ogg; + pFlac->bs.pUserData = (void*)pInternalOggbs; + pFlac->_oggbs = (void*)pInternalOggbs; + } +#endif + + pFlac->firstFramePos = firstFramePos; + + // NOTE: Seektables are not currently compatible with Ogg encapsulation (Ogg has its own accelerated seeking system). I may change this later, so I'm leaving this here for now. +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) + { + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + else +#endif + { + // If we have a seektable we need to load it now, making sure we move back to where we were previously. + if (seektablePos != 0) { + pFlac->seekpointCount = seektableSize / sizeof(*pFlac->pSeekpoints); + pFlac->pSeekpoints = (drflac_seekpoint*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize); + + // Seek to the seektable, then just read directly into our seektable buffer. + if (pFlac->bs.onSeek(pFlac->bs.pUserData, (int)seektablePos, drflac_seek_origin_start)) { + if (pFlac->bs.onRead(pFlac->bs.pUserData, pFlac->pSeekpoints, seektableSize) == seektableSize) { + // Endian swap. + for (drflac_uint32 iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) { + pFlac->pSeekpoints[iSeekpoint].firstSample = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].firstSample); + pFlac->pSeekpoints[iSeekpoint].frameOffset = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].frameOffset); + pFlac->pSeekpoints[iSeekpoint].sampleCount = drflac__be2host_16(pFlac->pSeekpoints[iSeekpoint].sampleCount); + } + } else { + // Failed to read the seektable. Pretend we don't have one. + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + + // We need to seek back to where we were. If this fails it's a critical error. + if (!pFlac->bs.onSeek(pFlac->bs.pUserData, (int)pFlac->firstFramePos, drflac_seek_origin_start)) { + DRFLAC_FREE(pFlac); + return NULL; + } + } else { + // Failed to seek to the seektable. Ominous sign, but for now we can just pretend we don't have one. + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + } + } + + + + // If we get here, but don't have a STREAMINFO block, it means we've opened the stream in relaxed mode and need to decode + // the first frame. + if (!init.hasStreamInfoBlock) { + pFlac->currentFrame.header = init.firstFrameHeader; + do + { + drflac_result result = drflac__decode_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + break; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + DRFLAC_FREE(pFlac); + return NULL; + } + continue; + } else { + DRFLAC_FREE(pFlac); + return NULL; + } + } + } while (1); + } + + return pFlac; +} + + + +#ifndef DR_FLAC_NO_STDIO +#include <stdio.h> + +static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + return fread(bufferOut, 1, bytesToRead, (FILE*)pUserData); +} + +static drflac_bool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac_assert(offset >= 0); // <-- Never seek backwards. + + return fseek((FILE*)pUserData, offset, (origin == drflac_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; +} + +static FILE* drflac__fopen(const char* filename) +{ + FILE* pFile; +#ifdef _MSC_VER + if (fopen_s(&pFile, filename, "rb") != 0) { + return NULL; + } +#else + pFile = fopen(filename, "rb"); + if (pFile == NULL) { + return NULL; + } +#endif + + return pFile; +} + + +drflac* drflac_open_file(const char* filename) +{ + FILE* file = drflac__fopen(filename); + if (file == NULL) { + return NULL; + } + + drflac* pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)file); + if (pFlac == NULL) { + fclose(file); + return NULL; + } + + return pFlac; +} + +drflac* drflac_open_file_with_metadata(const char* filename, drflac_meta_proc onMeta, void* pUserData) +{ + FILE* file = drflac__fopen(filename); + if (file == NULL) { + return NULL; + } + + drflac* pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)file, pUserData); + if (pFlac == NULL) { + fclose(file); + return pFlac; + } + + return pFlac; +} +#endif //DR_FLAC_NO_STDIO + +static size_t drflac__on_read_memory(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + drflac_assert(memoryStream != NULL); + drflac_assert(memoryStream->dataSize >= memoryStream->currentReadPos); + + size_t bytesRemaining = memoryStream->dataSize - memoryStream->currentReadPos; + if (bytesToRead > bytesRemaining) { + bytesToRead = bytesRemaining; + } + + if (bytesToRead > 0) { + drflac_copy_memory(bufferOut, memoryStream->data + memoryStream->currentReadPos, bytesToRead); + memoryStream->currentReadPos += bytesToRead; + } + + return bytesToRead; +} + +static drflac_bool32 drflac__on_seek_memory(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + drflac_assert(memoryStream != NULL); + drflac_assert(offset >= 0); // <-- Never seek backwards. + + if (offset > (drflac_int64)memoryStream->dataSize) { + return DRFLAC_FALSE; + } + + if (origin == drflac_seek_origin_current) { + if (memoryStream->currentReadPos + offset <= memoryStream->dataSize) { + memoryStream->currentReadPos += offset; + } else { + return DRFLAC_FALSE; // Trying to seek too far forward. + } + } else { + if ((drflac_uint32)offset <= memoryStream->dataSize) { + memoryStream->currentReadPos = offset; + } else { + return DRFLAC_FALSE; // Trying to seek too far forward. + } + } + + return DRFLAC_TRUE; +} + +drflac* drflac_open_memory(const void* data, size_t dataSize) +{ + drflac__memory_stream memoryStream; + memoryStream.data = (const unsigned char*)data; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + drflac* pFlac = drflac_open(drflac__on_read_memory, drflac__on_seek_memory, &memoryStream); + if (pFlac == NULL) { + return NULL; + } + + pFlac->memoryStream = memoryStream; + + // This is an awful hack... +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + + return pFlac; +} + +drflac* drflac_open_memory_with_metadata(const void* data, size_t dataSize, drflac_meta_proc onMeta, void* pUserData) +{ + drflac__memory_stream memoryStream; + memoryStream.data = (const unsigned char*)data; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + drflac* pFlac = drflac_open_with_metadata_private(drflac__on_read_memory, drflac__on_seek_memory, onMeta, drflac_container_unknown, &memoryStream, pUserData); + if (pFlac == NULL) { + return NULL; + } + + pFlac->memoryStream = memoryStream; + + // This is an awful hack... +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + + return pFlac; +} + + + +drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, drflac_container_unknown, pUserData, pUserData); +} +drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, container, pUserData, pUserData); +} + +drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, drflac_container_unknown, pUserData, pUserData); +} +drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, container, pUserData, pUserData); +} + +void drflac_close(drflac* pFlac) +{ + if (pFlac == NULL) { + return; + } + +#ifndef DR_FLAC_NO_STDIO + // If we opened the file with drflac_open_file() we will want to close the file handle. We can know whether or not drflac_open_file() + // was used by looking at the callbacks. + if (pFlac->bs.onRead == drflac__on_read_stdio) { + fclose((FILE*)pFlac->bs.pUserData); + } + +#ifndef DR_FLAC_NO_OGG + // Need to clean up Ogg streams a bit differently due to the way the bit streaming is chained. + if (pFlac->container == drflac_container_ogg) { + drflac_assert(pFlac->bs.onRead == drflac__on_read_ogg); + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + if (oggbs->onRead == drflac__on_read_stdio) { + fclose((FILE*)oggbs->pUserData); + } + } +#endif +#endif + + DRFLAC_FREE(pFlac); +} + +drflac_uint64 drflac__read_s32__misaligned(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int32* bufferOut) +{ + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + + // We should never be calling this when the number of samples to read is >= the sample count. + drflac_assert(samplesToRead < channelCount); + drflac_assert(pFlac->currentFrame.samplesRemaining > 0 && samplesToRead <= pFlac->currentFrame.samplesRemaining); + + + drflac_uint64 samplesRead = 0; + while (samplesToRead > 0) { + drflac_uint64 totalSamplesInFrame = pFlac->currentFrame.header.blockSize * channelCount; + drflac_uint64 samplesReadFromFrameSoFar = totalSamplesInFrame - pFlac->currentFrame.samplesRemaining; + drflac_uint64 channelIndex = samplesReadFromFrameSoFar % channelCount; + + drflac_uint64 nextSampleInFrame = samplesReadFromFrameSoFar / channelCount; + + int decodedSample = 0; + switch (pFlac->currentFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + if (channelIndex == 0) { + decodedSample = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample; + } else { + int side = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample; + int left = pFlac->currentFrame.subframes[channelIndex - 1].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex - 1].wastedBitsPerSample; + decodedSample = left - side; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + if (channelIndex == 0) { + int side = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample; + int right = pFlac->currentFrame.subframes[channelIndex + 1].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 1].wastedBitsPerSample; + decodedSample = side + right; + } else { + decodedSample = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + int mid; + int side; + if (channelIndex == 0) { + mid = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample; + side = pFlac->currentFrame.subframes[channelIndex + 1].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 1].wastedBitsPerSample; + + mid = (((unsigned int)mid) << 1) | (side & 0x01); + decodedSample = (mid + side) >> 1; + } else { + mid = pFlac->currentFrame.subframes[channelIndex - 1].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex - 1].wastedBitsPerSample; + side = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample; + + mid = (((unsigned int)mid) << 1) | (side & 0x01); + decodedSample = (mid - side) >> 1; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + decodedSample = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample; + } break; + } + + + decodedSample <<= (32 - pFlac->bitsPerSample); + + if (bufferOut) { + *bufferOut++ = decodedSample; + } + + samplesRead += 1; + pFlac->currentFrame.samplesRemaining -= 1; + samplesToRead -= 1; + } + + return samplesRead; +} + +drflac_uint64 drflac__seek_forward_by_samples(drflac* pFlac, drflac_uint64 samplesToRead) +{ + drflac_uint64 samplesRead = 0; + while (samplesToRead > 0) { + if (pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_and_decode_next_frame(pFlac)) { + break; // Couldn't read the next frame, so just break from the loop and return. + } + } else { + if (pFlac->currentFrame.samplesRemaining > samplesToRead) { + samplesRead += samplesToRead; + pFlac->currentFrame.samplesRemaining -= (drflac_uint32)samplesToRead; // <-- Safe cast. Will always be < currentFrame.samplesRemaining < 65536. + samplesToRead = 0; + } else { + samplesRead += pFlac->currentFrame.samplesRemaining; + samplesToRead -= pFlac->currentFrame.samplesRemaining; + pFlac->currentFrame.samplesRemaining = 0; + } + } + } + + pFlac->currentSample += samplesRead; + return samplesRead; +} + +drflac_uint64 drflac_read_s32(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int32* bufferOut) +{ + // Note that <bufferOut> is allowed to be null, in which case this will act like a seek. + if (pFlac == NULL || samplesToRead == 0) { + return 0; + } + + if (bufferOut == NULL) { + return drflac__seek_forward_by_samples(pFlac, samplesToRead); + } + + + drflac_uint64 samplesRead = 0; + while (samplesToRead > 0) { + // If we've run out of samples in this frame, go to the next. + if (pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_and_decode_next_frame(pFlac)) { + break; // Couldn't read the next frame, so just break from the loop and return. + } + } else { + // Here is where we grab the samples and interleave them. + + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + drflac_uint64 totalSamplesInFrame = pFlac->currentFrame.header.blockSize * channelCount; + drflac_uint64 samplesReadFromFrameSoFar = totalSamplesInFrame - pFlac->currentFrame.samplesRemaining; + + drflac_uint64 misalignedSampleCount = samplesReadFromFrameSoFar % channelCount; + if (misalignedSampleCount > 0) { + drflac_uint64 misalignedSamplesRead = drflac__read_s32__misaligned(pFlac, misalignedSampleCount, bufferOut); + samplesRead += misalignedSamplesRead; + samplesReadFromFrameSoFar += misalignedSamplesRead; + bufferOut += misalignedSamplesRead; + samplesToRead -= misalignedSamplesRead; + pFlac->currentSample += misalignedSamplesRead; + } + + + drflac_uint64 alignedSampleCountPerChannel = samplesToRead / channelCount; + if (alignedSampleCountPerChannel > pFlac->currentFrame.samplesRemaining / channelCount) { + alignedSampleCountPerChannel = pFlac->currentFrame.samplesRemaining / channelCount; + } + + drflac_uint64 firstAlignedSampleInFrame = samplesReadFromFrameSoFar / channelCount; + unsigned int unusedBitsPerSample = 32 - pFlac->bitsPerSample; + + switch (pFlac->currentFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (drflac_uint64 i = 0; i < alignedSampleCountPerChannel; ++i) { + int left = pDecodedSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + int side = pDecodedSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + int right = left - side; + + bufferOut[i*2+0] = left; + bufferOut[i*2+1] = right; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (drflac_uint64 i = 0; i < alignedSampleCountPerChannel; ++i) { + int side = pDecodedSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + int right = pDecodedSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + int left = right + side; + + bufferOut[i*2+0] = left; + bufferOut[i*2+1] = right; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (drflac_uint64 i = 0; i < alignedSampleCountPerChannel; ++i) { + int mid = pDecodedSamples0[i] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int side = pDecodedSamples1[i] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + + mid = (((drflac_uint32)mid) << 1) | (side & 0x01); + + bufferOut[i*2+0] = ((mid + side) >> 1) << (unusedBitsPerSample); + bufferOut[i*2+1] = ((mid - side) >> 1) << (unusedBitsPerSample); + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + if (pFlac->currentFrame.header.channelAssignment == 1) // 1 = Stereo + { + // Stereo optimized inner loop unroll. + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (drflac_uint64 i = 0; i < alignedSampleCountPerChannel; ++i) { + bufferOut[i*2+0] = pDecodedSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + bufferOut[i*2+1] = pDecodedSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + } + } + else + { + // Generic interleaving. + for (drflac_uint64 i = 0; i < alignedSampleCountPerChannel; ++i) { + for (unsigned int j = 0; j < channelCount; ++j) { + bufferOut[(i*channelCount)+j] = (pFlac->currentFrame.subframes[j].pDecodedSamples[firstAlignedSampleInFrame + i]) << (unusedBitsPerSample + pFlac->currentFrame.subframes[j].wastedBitsPerSample); + } + } + } + } break; + } + + drflac_uint64 alignedSamplesRead = alignedSampleCountPerChannel * channelCount; + samplesRead += alignedSamplesRead; + samplesReadFromFrameSoFar += alignedSamplesRead; + bufferOut += alignedSamplesRead; + samplesToRead -= alignedSamplesRead; + pFlac->currentSample += alignedSamplesRead; + pFlac->currentFrame.samplesRemaining -= (unsigned int)alignedSamplesRead; + + + // At this point we may still have some excess samples left to read. + if (samplesToRead > 0 && pFlac->currentFrame.samplesRemaining > 0) { + drflac_uint64 excessSamplesRead = 0; + if (samplesToRead < pFlac->currentFrame.samplesRemaining) { + excessSamplesRead = drflac__read_s32__misaligned(pFlac, samplesToRead, bufferOut); + } else { + excessSamplesRead = drflac__read_s32__misaligned(pFlac, pFlac->currentFrame.samplesRemaining, bufferOut); + } + + samplesRead += excessSamplesRead; + samplesReadFromFrameSoFar += excessSamplesRead; + bufferOut += excessSamplesRead; + samplesToRead -= excessSamplesRead; + pFlac->currentSample += excessSamplesRead; + } + } + } + + return samplesRead; +} + +drflac_uint64 drflac_read_s16(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int16* pBufferOut) +{ + // This reads samples in 2 passes and can probably be optimized. + drflac_uint64 totalSamplesRead = 0; + + while (samplesToRead > 0) { + drflac_int32 samples32[4096]; + drflac_uint64 samplesJustRead = drflac_read_s32(pFlac, (samplesToRead > 4096) ? 4096 : samplesToRead, samples32); + if (samplesJustRead == 0) { + break; // Reached the end. + } + + // s32 -> s16 + for (drflac_uint64 i = 0; i < samplesJustRead; ++i) { + pBufferOut[i] = (drflac_int16)(samples32[i] >> 16); + } + + totalSamplesRead += samplesJustRead; + samplesToRead -= samplesJustRead; + pBufferOut += samplesJustRead; + } + + return totalSamplesRead; +} + +drflac_uint64 drflac_read_f32(drflac* pFlac, drflac_uint64 samplesToRead, float* pBufferOut) +{ + // This reads samples in 2 passes and can probably be optimized. + drflac_uint64 totalSamplesRead = 0; + + while (samplesToRead > 0) { + drflac_int32 samples32[4096]; + drflac_uint64 samplesJustRead = drflac_read_s32(pFlac, (samplesToRead > 4096) ? 4096 : samplesToRead, samples32); + if (samplesJustRead == 0) { + break; // Reached the end. + } + + // s32 -> f32 + for (drflac_uint64 i = 0; i < samplesJustRead; ++i) { + pBufferOut[i] = (float)(samples32[i] / 2147483648.0); + } + + totalSamplesRead += samplesJustRead; + samplesToRead -= samplesJustRead; + pBufferOut += samplesJustRead; + } + + return totalSamplesRead; +} + +drflac_bool32 drflac_seek_to_sample(drflac* pFlac, drflac_uint64 sampleIndex) +{ + if (pFlac == NULL) { + return DRFLAC_FALSE; + } + + // If we don't know where the first frame begins then we can't seek. This will happen when the STREAMINFO block was not present + // when the decoder was opened. + if (pFlac->firstFramePos == 0) { + return DRFLAC_FALSE; + } + + if (sampleIndex == 0) { + pFlac->currentSample = 0; + return drflac__seek_to_first_frame(pFlac); + } else { + drflac_bool32 wasSuccessful = DRFLAC_FALSE; + + // Clamp the sample to the end. + if (sampleIndex >= pFlac->totalSampleCount) { + sampleIndex = pFlac->totalSampleCount - 1; + } + + // If the target sample and the current sample are in the same frame we just move the position forward. + if (sampleIndex > pFlac->currentSample) { + // Forward. + drflac_uint32 offset = (drflac_uint32)(sampleIndex - pFlac->currentSample); + if (pFlac->currentFrame.samplesRemaining > offset) { + pFlac->currentFrame.samplesRemaining -= offset; + pFlac->currentSample = sampleIndex; + return DRFLAC_TRUE; + } + } else { + // Backward. + drflac_uint32 offsetAbs = (drflac_uint32)(pFlac->currentSample - sampleIndex); + drflac_uint32 currentFrameSampleCount = pFlac->currentFrame.header.blockSize * drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + drflac_uint32 currentFrameSamplesConsumed = (drflac_uint32)(currentFrameSampleCount - pFlac->currentFrame.samplesRemaining); + if (currentFrameSamplesConsumed > offsetAbs) { + pFlac->currentFrame.samplesRemaining += offsetAbs; + pFlac->currentSample = sampleIndex; + return DRFLAC_TRUE; + } + } + + // Different techniques depending on encapsulation. Using the native FLAC seektable with Ogg encapsulation is a bit awkward so + // we'll instead use Ogg's natural seeking facility. +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + wasSuccessful = drflac_ogg__seek_to_sample(pFlac, sampleIndex); + } + else +#endif + { + // First try seeking via the seek table. If this fails, fall back to a brute force seek which is much slower. + wasSuccessful = drflac__seek_to_sample__seek_table(pFlac, sampleIndex); + if (!wasSuccessful) { + wasSuccessful = drflac__seek_to_sample__brute_force(pFlac, sampleIndex); + } + } + + pFlac->currentSample = sampleIndex; + return wasSuccessful; + } +} + + + +//// High Level APIs //// + +#if defined(SIZE_MAX) + #define DRFLAC_SIZE_MAX SIZE_MAX +#else + #if defined(DRFLAC_64BIT) + #define DRFLAC_SIZE_MAX ((drflac_uint64)0xFFFFFFFFFFFFFFFF) + #else + #define DRFLAC_SIZE_MAX 0xFFFFFFFF + #endif +#endif + + +// Using a macro as the definition of the drflac__full_decode_and_close_*() API family. Sue me. +#define DRFLAC_DEFINE_FULL_DECODE_AND_CLOSE(extension, type) \ +static type* drflac__full_decode_and_close_ ## extension (drflac* pFlac, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut)\ +{ \ + drflac_assert(pFlac != NULL); \ + \ + type* pSampleData = NULL; \ + drflac_uint64 totalSampleCount = pFlac->totalSampleCount; \ + \ + if (totalSampleCount == 0) { \ + type buffer[4096]; \ + \ + size_t sampleDataBufferSize = sizeof(buffer); \ + pSampleData = (type*)DRFLAC_MALLOC(sampleDataBufferSize); \ + if (pSampleData == NULL) { \ + goto on_error; \ + } \ + \ + drflac_uint64 samplesRead; \ + while ((samplesRead = (drflac_uint64)drflac_read_##extension(pFlac, sizeof(buffer)/sizeof(buffer[0]), buffer)) > 0) { \ + if (((totalSampleCount + samplesRead) * sizeof(type)) > sampleDataBufferSize) { \ + sampleDataBufferSize *= 2; \ + type* pNewSampleData = (type*)DRFLAC_REALLOC(pSampleData, sampleDataBufferSize); \ + if (pNewSampleData == NULL) { \ + DRFLAC_FREE(pSampleData); \ + goto on_error; \ + } \ + \ + pSampleData = pNewSampleData; \ + } \ + \ + drflac_copy_memory(pSampleData + totalSampleCount, buffer, (size_t)(samplesRead*sizeof(type))); \ + totalSampleCount += samplesRead; \ + } \ + \ + /* At this point everything should be decoded, but we just want to fill the unused part buffer with silence - need to \ + protect those ears from random noise! */ \ + drflac_zero_memory(pSampleData + totalSampleCount, (size_t)(sampleDataBufferSize - totalSampleCount*sizeof(type))); \ + } else { \ + drflac_uint64 dataSize = totalSampleCount * sizeof(type); \ + if (dataSize > DRFLAC_SIZE_MAX) { \ + goto on_error; /* The decoded data is too big. */ \ + } \ + \ + pSampleData = (type*)DRFLAC_MALLOC((size_t)dataSize); /* <-- Safe cast as per the check above. */ \ + if (pSampleData == NULL) { \ + goto on_error; \ + } \ + \ + totalSampleCount = drflac_read_##extension(pFlac, pFlac->totalSampleCount, pSampleData); \ + } \ + \ + if (sampleRateOut) *sampleRateOut = pFlac->sampleRate; \ + if (channelsOut) *channelsOut = pFlac->channels; \ + if (totalSampleCountOut) *totalSampleCountOut = totalSampleCount; \ + \ + drflac_close(pFlac); \ + return pSampleData; \ + \ +on_error: \ + drflac_close(pFlac); \ + return NULL; \ +} + +DRFLAC_DEFINE_FULL_DECODE_AND_CLOSE(s32, drflac_int32) +DRFLAC_DEFINE_FULL_DECODE_AND_CLOSE(s16, drflac_int16) +DRFLAC_DEFINE_FULL_DECODE_AND_CLOSE(f32, float) + +drflac_int32* drflac_open_and_decode_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + // Safety. + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open(onRead, onSeek, pUserData); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s32(pFlac, channels, sampleRate, totalSampleCount); +} + +drflac_int16* drflac_open_and_decode_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + // Safety. + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open(onRead, onSeek, pUserData); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s16(pFlac, channels, sampleRate, totalSampleCount); +} + +float* drflac_open_and_decode_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + // Safety. + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open(onRead, onSeek, pUserData); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_f32(pFlac, channels, sampleRate, totalSampleCount); +} + +#ifndef DR_FLAC_NO_STDIO +drflac_int32* drflac_open_and_decode_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_file(filename); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s32(pFlac, channels, sampleRate, totalSampleCount); +} + +drflac_int16* drflac_open_and_decode_file_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_file(filename); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s16(pFlac, channels, sampleRate, totalSampleCount); +} + +float* drflac_open_and_decode_file_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_file(filename); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_f32(pFlac, channels, sampleRate, totalSampleCount); +} +#endif + +drflac_int32* drflac_open_and_decode_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_memory(data, dataSize); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s32(pFlac, channels, sampleRate, totalSampleCount); +} + +drflac_int16* drflac_open_and_decode_memory_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_memory(data, dataSize); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s16(pFlac, channels, sampleRate, totalSampleCount); +} + +float* drflac_open_and_decode_memory_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_memory(data, dataSize); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_f32(pFlac, channels, sampleRate, totalSampleCount); +} + +void drflac_free(void* pSampleDataReturnedByOpenAndDecode) +{ + DRFLAC_FREE(pSampleDataReturnedByOpenAndDecode); +} + + + + +void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments) +{ + if (pIter == NULL) { + return; + } + + pIter->countRemaining = commentCount; + pIter->pRunningData = (const char*)pComments; +} + +const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut) +{ + // Safety. + if (pCommentLengthOut) *pCommentLengthOut = 0; + + if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { + return NULL; + } + + drflac_uint32 length = drflac__le2host_32(*(const drflac_uint32*)pIter->pRunningData); + pIter->pRunningData += 4; + + const char* pComment = pIter->pRunningData; + pIter->pRunningData += length; + pIter->countRemaining -= 1; + + if (pCommentLengthOut) *pCommentLengthOut = length; + return pComment; +} + + + + +void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData) +{ + if (pIter == NULL) { + return; + } + + pIter->countRemaining = trackCount; + pIter->pRunningData = (const char*)pTrackData; +} + +drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack) +{ + if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { + return DRFLAC_FALSE; + } + + drflac_cuesheet_track cuesheetTrack; + + const char* pRunningData = pIter->pRunningData; + + drflac_uint64 offsetHi = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + drflac_uint64 offsetLo = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + cuesheetTrack.offset = offsetLo | (offsetHi << 32); + cuesheetTrack.trackNumber = pRunningData[0]; pRunningData += 1; + drflac_copy_memory(cuesheetTrack.ISRC, pRunningData, sizeof(cuesheetTrack.ISRC)); pRunningData += 12; + cuesheetTrack.isAudio = (pRunningData[0] & 0x80) != 0; + cuesheetTrack.preEmphasis = (pRunningData[0] & 0x40) != 0; pRunningData += 14; + cuesheetTrack.indexCount = pRunningData[0]; pRunningData += 1; + cuesheetTrack.pIndexPoints = (const drflac_cuesheet_track_index*)pRunningData; pRunningData += cuesheetTrack.indexCount * sizeof(drflac_cuesheet_track_index); + + pIter->pRunningData = pRunningData; + pIter->countRemaining -= 1; + + if (pCuesheetTrack) *pCuesheetTrack = cuesheetTrack; + return DRFLAC_TRUE; +} +#endif //DR_FLAC_IMPLEMENTATION + + +// REVISION HISTORY +// +// v0.10.0 - 2018-09-11 +// - Remove the DR_FLAC_NO_WIN32_IO option and the Win32 file IO functionality. If you need to use Win32 file IO you +// need to do it yourself via the callback API. +// - Fix the clang build. +// - Fix undefined behavior. +// - Fix errors with CUESHEET metdata blocks. +// - Add an API for iterating over each cuesheet track in the CUESHEET metadata block. This works the same way as the +// Vorbis comment API. +// - Other miscellaneous bug fixes, mostly relating to invalid FLAC streams. +// - Minor optimizations. +// +// v0.9.11 - 2018-08-29 +// - Fix a bug with sample reconstruction. +// +// v0.9.10 - 2018-08-07 +// - Improve 64-bit detection. +// +// v0.9.9 - 2018-08-05 +// - Fix C++ build on older versions of GCC. +// +// v0.9.8 - 2018-07-24 +// - Fix compilation errors. +// +// v0.9.7 - 2018-07-05 +// - Fix a warning. +// +// v0.9.6 - 2018-06-29 +// - Fix some typos. +// +// v0.9.5 - 2018-06-23 +// - Fix some warnings. +// +// v0.9.4 - 2018-06-14 +// - Optimizations to seeking. +// - Clean up. +// +// v0.9.3 - 2018-05-22 +// - Bug fix. +// +// v0.9.2 - 2018-05-12 +// - Fix a compilation error due to a missing break statement. +// +// v0.9.1 - 2018-04-29 +// - Fix compilation error with Clang. +// +// v0.9 - 2018-04-24 +// - Fix Clang build. +// - Start using major.minor.revision versioning. +// +// v0.8g - 2018-04-19 +// - Fix build on non-x86/x64 architectures. +// +// v0.8f - 2018-02-02 +// - Stop pretending to support changing rate/channels mid stream. +// +// v0.8e - 2018-02-01 +// - Fix a crash when the block size of a frame is larger than the maximum block size defined by the FLAC stream. +// - Fix a crash the the Rice partition order is invalid. +// +// v0.8d - 2017-09-22 +// - Add support for decoding streams with ID3 tags. ID3 tags are just skipped. +// +// v0.8c - 2017-09-07 +// - Fix warning on non-x86/x64 architectures. +// +// v0.8b - 2017-08-19 +// - Fix build on non-x86/x64 architectures. +// +// v0.8a - 2017-08-13 +// - A small optimization for the Clang build. +// +// v0.8 - 2017-08-12 +// - API CHANGE: Rename dr_* types to drflac_*. +// - Optimizations. This brings dr_flac back to about the same class of efficiency as the reference implementation. +// - Add support for custom implementations of malloc(), realloc(), etc. +// - Add CRC checking to Ogg encapsulated streams. +// - Fix VC++ 6 build. This is only for the C++ compiler. The C compiler is not currently supported. +// - Bug fixes. +// +// v0.7 - 2017-07-23 +// - Add support for opening a stream without a header block. To do this, use drflac_open_relaxed() / drflac_open_with_metadata_relaxed(). +// +// v0.6 - 2017-07-22 +// - Add support for recovering from invalid frames. With this change, dr_flac will simply skip over invalid frames as if they +// never existed. Frames are checked against their sync code, the CRC-8 of the frame header and the CRC-16 of the whole frame. +// +// v0.5 - 2017-07-16 +// - Fix typos. +// - Change drflac_bool* types to unsigned. +// - Add CRC checking. This makes dr_flac slower, but can be disabled with #define DR_FLAC_NO_CRC. +// +// v0.4f - 2017-03-10 +// - Fix a couple of bugs with the bitstreaming code. +// +// v0.4e - 2017-02-17 +// - Fix some warnings. +// +// v0.4d - 2016-12-26 +// - Add support for 32-bit floating-point PCM decoding. +// - Use drflac_int*/drflac_uint* sized types to improve compiler support. +// - Minor improvements to documentation. +// +// v0.4c - 2016-12-26 +// - Add support for signed 16-bit integer PCM decoding. +// +// v0.4b - 2016-10-23 +// - A minor change to drflac_bool8 and drflac_bool32 types. +// +// v0.4a - 2016-10-11 +// - Rename drBool32 to drflac_bool32 for styling consistency. +// +// v0.4 - 2016-09-29 +// - API/ABI CHANGE: Use fixed size 32-bit booleans instead of the built-in bool type. +// - API CHANGE: Rename drflac_open_and_decode*() to drflac_open_and_decode*_s32(). +// - API CHANGE: Swap the order of "channels" and "sampleRate" parameters in drflac_open_and_decode*(). Rationale for this is to +// keep it consistent with drflac_audio. +// +// v0.3f - 2016-09-21 +// - Fix a warning with GCC. +// +// v0.3e - 2016-09-18 +// - Fixed a bug where GCC 4.3+ was not getting properly identified. +// - Fixed a few typos. +// - Changed date formats to ISO 8601 (YYYY-MM-DD). +// +// v0.3d - 2016-06-11 +// - Minor clean up. +// +// v0.3c - 2016-05-28 +// - Fixed compilation error. +// +// v0.3b - 2016-05-16 +// - Fixed Linux/GCC build. +// - Updated documentation. +// +// v0.3a - 2016-05-15 +// - Minor fixes to documentation. +// +// v0.3 - 2016-05-11 +// - Optimizations. Now at about parity with the reference implementation on 32-bit builds. +// - Lots of clean up. +// +// v0.2b - 2016-05-10 +// - Bug fixes. +// +// v0.2a - 2016-05-10 +// - Made drflac_open_and_decode() more robust. +// - Removed an unused debugging variable +// +// v0.2 - 2016-05-09 +// - Added support for Ogg encapsulation. +// - API CHANGE. Have the onSeek callback take a third argument which specifies whether or not the seek +// should be relative to the start or the current position. Also changes the seeking rules such that +// seeking offsets will never be negative. +// - Have drflac_open_and_decode() fail gracefully if the stream has an unknown total sample count. +// +// v0.1b - 2016-05-07 +// - Properly close the file handle in drflac_open_file() and family when the decoder fails to initialize. +// - Removed a stale comment. +// +// v0.1a - 2016-05-05 +// - Minor formatting changes. +// - Fixed a warning on the GCC build. +// +// v0.1 - 2016-05-03 +// - Initial versioned release. + + +/* +This is free and unencumbered software released into the public domain. + +Anyone is free to copy, modify, publish, use, compile, sell, or +distribute this software, either in source code form or as a compiled +binary, for any purpose, commercial or non-commercial, and by any +means. + +In jurisdictions that recognize copyright laws, the author or authors +of this software dedicate any and all copyright interest in the +software to the public domain. We make this dedication for the benefit +of the public at large and to the detriment of our heirs and +successors. We intend this dedication to be an overt act of +relinquishment in perpetuity of all present and future rights to this +software under copyright law. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR +OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +OTHER DEALINGS IN THE SOFTWARE. + +For more information, please refer to <http://unlicense.org/> +*/ diff --git a/include/kfr/io/dr/dr_wav.h b/include/kfr/io/dr/dr_wav.h @@ -0,0 +1,3727 @@ +// WAV audio loader and writer. Public domain. See "unlicense" statement at the end of this file. +// dr_wav - v0.8.5 - 2018-09-11 +// +// David Reid - mackron@gmail.com + +// USAGE +// +// This is a single-file library. To use it, do something like the following in one .c file. +// #define DR_WAV_IMPLEMENTATION +// #include "dr_wav.h" +// +// You can then #include this file in other parts of the program as you would with any other header file. Do something +// like the following to read audio data: +// +// drwav wav; +// if (!drwav_init_file(&wav, "my_song.wav")) { +// // Error opening WAV file. +// } +// +// drwav_int32* pDecodedInterleavedSamples = malloc(wav.totalSampleCount * sizeof(drwav_int32)); +// size_t numberOfSamplesActuallyDecoded = drwav_read_s32(&wav, wav.totalSampleCount, pDecodedInterleavedSamples); +// +// ... +// +// drwav_uninit(&wav); +// +// You can also use drwav_open() to allocate and initialize the loader for you: +// +// drwav* pWav = drwav_open_file("my_song.wav"); +// if (pWav == NULL) { +// // Error opening WAV file. +// } +// +// ... +// +// drwav_close(pWav); +// +// If you just want to quickly open and read the audio data in a single operation you can do something like this: +// +// unsigned int channels; +// unsigned int sampleRate; +// drwav_uint64 totalSampleCount; +// float* pSampleData = drwav_open_and_read_file_s32("my_song.wav", &channels, &sampleRate, &totalSampleCount); +// if (pSampleData == NULL) { +// // Error opening and reading WAV file. +// } +// +// ... +// +// drwav_free(pSampleData); +// +// The examples above use versions of the API that convert the audio data to a consistent format (32-bit signed PCM, in +// this case), but you can still output the audio data in its internal format (see notes below for supported formats): +// +// size_t samplesRead = drwav_read(&wav, wav.totalSampleCount, pDecodedInterleavedSamples); +// +// You can also read the raw bytes of audio data, which could be useful if dr_wav does not have native support for +// a particular data format: +// +// size_t bytesRead = drwav_read_raw(&wav, bytesToRead, pRawDataBuffer); +// +// +// dr_wav has seamless support the Sony Wave64 format. The decoder will automatically detect it and it should Just Work +// without any manual intervention. +// +// +// dr_wav can also be used to output WAV files. This does not currently support compressed formats. To use this, look at +// drwav_open_write(), drwav_open_file_write(), etc. Use drwav_write() to write samples, or drwav_write_raw() to write +// raw data in the "data" chunk. +// +// drwav_data_format format; +// format.container = drwav_container_riff; // <-- drwav_container_riff = normal WAV files, drwav_container_w64 = Sony Wave64. +// format.format = DR_WAVE_FORMAT_PCM; // <-- Any of the DR_WAVE_FORMAT_* codes. +// format.channels = 2; +// format.sampleRate = 44100; +// format.bitsPerSample = 16; +// drwav* pWav = drwav_open_file_write("data/recording.wav", &format); +// +// ... +// +// drwav_uint64 samplesWritten = drwav_write(pWav, sampleCount, pSamples); +// +// +// +// OPTIONS +// #define these options before including this file. +// +// #define DR_WAV_NO_CONVERSION_API +// Disables conversion APIs such as drwav_read_f32() and drwav_s16_to_f32(). +// +// #define DR_WAV_NO_STDIO +// Disables drwav_open_file(), drwav_open_file_write(), etc. +// +// +// +// QUICK NOTES +// - Samples are always interleaved. +// - The default read function does not do any data conversion. Use drwav_read_f32() to read and convert audio data +// to IEEE 32-bit floating point samples, drwav_read_s32() to read samples as signed 32-bit PCM and drwav_read_s16() +// to read samples as signed 16-bit PCM. Tested and supported internal formats include the following: +// - Unsigned 8-bit PCM +// - Signed 12-bit PCM +// - Signed 16-bit PCM +// - Signed 24-bit PCM +// - Signed 32-bit PCM +// - IEEE 32-bit floating point +// - IEEE 64-bit floating point +// - A-law and u-law +// - Microsoft ADPCM +// - IMA ADPCM (DVI, format code 0x11) +// - dr_wav will try to read the WAV file as best it can, even if it's not strictly conformant to the WAV format. + + +#ifndef dr_wav_h +#define dr_wav_h + +#include <stddef.h> + +#if defined(_MSC_VER) && _MSC_VER < 1600 +typedef signed char drwav_int8; +typedef unsigned char drwav_uint8; +typedef signed short drwav_int16; +typedef unsigned short drwav_uint16; +typedef signed int drwav_int32; +typedef unsigned int drwav_uint32; +typedef signed __int64 drwav_int64; +typedef unsigned __int64 drwav_uint64; +#else +#include <stdint.h> +typedef int8_t drwav_int8; +typedef uint8_t drwav_uint8; +typedef int16_t drwav_int16; +typedef uint16_t drwav_uint16; +typedef int32_t drwav_int32; +typedef uint32_t drwav_uint32; +typedef int64_t drwav_int64; +typedef uint64_t drwav_uint64; +#endif +typedef drwav_uint8 drwav_bool8; +typedef drwav_uint32 drwav_bool32; +#define DRWAV_TRUE 1 +#define DRWAV_FALSE 0 + +#ifdef __cplusplus +extern "C" { +#endif + +// Common data formats. +#define DR_WAVE_FORMAT_PCM 0x1 +#define DR_WAVE_FORMAT_ADPCM 0x2 +#define DR_WAVE_FORMAT_IEEE_FLOAT 0x3 +#define DR_WAVE_FORMAT_ALAW 0x6 +#define DR_WAVE_FORMAT_MULAW 0x7 +#define DR_WAVE_FORMAT_DVI_ADPCM 0x11 +#define DR_WAVE_FORMAT_EXTENSIBLE 0xFFFE + +typedef enum +{ + drwav_seek_origin_start, + drwav_seek_origin_current +} drwav_seek_origin; + +typedef enum +{ + drwav_container_riff, + drwav_container_w64 +} drwav_container; + +// Callback for when data is read. Return value is the number of bytes actually read. +// +// pUserData [in] The user data that was passed to drwav_init(), drwav_open() and family. +// pBufferOut [out] The output buffer. +// bytesToRead [in] The number of bytes to read. +// +// Returns the number of bytes actually read. +// +// A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until +// either the entire bytesToRead is filled or you have reached the end of the stream. +typedef size_t (* drwav_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); + +// Callback for when data is written. Returns value is the number of bytes actually written. +// +// pUserData [in] The user data that was passed to drwav_init_write(), drwav_open_write() and family. +// pData [out] A pointer to the data to write. +// bytesToWrite [in] The number of bytes to write. +// +// Returns the number of bytes actually written. +// +// If the return value differs from bytesToWrite, it indicates an error. +typedef size_t (* drwav_write_proc)(void* pUserData, const void* pData, size_t bytesToWrite); + +// Callback for when data needs to be seeked. +// +// pUserData [in] The user data that was passed to drwav_init(), drwav_open() and family. +// offset [in] The number of bytes to move, relative to the origin. Will never be negative. +// origin [in] The origin of the seek - the current position or the start of the stream. +// +// Returns whether or not the seek was successful. +// +// Whether or not it is relative to the beginning or current position is determined by the "origin" parameter which +// will be either drwav_seek_origin_start or drwav_seek_origin_current. +typedef drwav_bool32 (* drwav_seek_proc)(void* pUserData, int offset, drwav_seek_origin origin); + +// Structure for internal use. Only used for loaders opened with drwav_open_memory(). +typedef struct +{ + const drwav_uint8* data; + size_t dataSize; + size_t currentReadPos; +} drwav__memory_stream; + +// Structure for internal use. Only used for writers opened with drwav_open_memory_write(). +typedef struct +{ + void** ppData; + size_t* pDataSize; + size_t dataSize; + size_t dataCapacity; + size_t currentWritePos; +} drwav__memory_stream_write; + +typedef struct +{ + drwav_container container; // RIFF, W64. + drwav_uint32 format; // DR_WAVE_FORMAT_* + drwav_uint32 channels; + drwav_uint32 sampleRate; + drwav_uint32 bitsPerSample; +} drwav_data_format; + +typedef struct +{ + // The format tag exactly as specified in the wave file's "fmt" chunk. This can be used by applications + // that require support for data formats not natively supported by dr_wav. + drwav_uint16 formatTag; + + // The number of channels making up the audio data. When this is set to 1 it is mono, 2 is stereo, etc. + drwav_uint16 channels; + + // The sample rate. Usually set to something like 44100. + drwav_uint32 sampleRate; + + // Average bytes per second. You probably don't need this, but it's left here for informational purposes. + drwav_uint32 avgBytesPerSec; + + // Block align. This is equal to the number of channels * bytes per sample. + drwav_uint16 blockAlign; + + // Bits per sample. + drwav_uint16 bitsPerSample; + + // The size of the extended data. Only used internally for validation, but left here for informational purposes. + drwav_uint16 extendedSize; + + // The number of valid bits per sample. When <formatTag> is equal to WAVE_FORMAT_EXTENSIBLE, <bitsPerSample> + // is always rounded up to the nearest multiple of 8. This variable contains information about exactly how + // many bits a valid per sample. Mainly used for informational purposes. + drwav_uint16 validBitsPerSample; + + // The channel mask. Not used at the moment. + drwav_uint32 channelMask; + + // The sub-format, exactly as specified by the wave file. + drwav_uint8 subFormat[16]; +} drwav_fmt; + +typedef struct +{ + // A pointer to the function to call when more data is needed. + drwav_read_proc onRead; + + // A pointer to the function to call when data needs to be written. Only used when the drwav object is opened in write mode. + drwav_write_proc onWrite; + + // A pointer to the function to call when the wav file needs to be seeked. + drwav_seek_proc onSeek; + + // The user data to pass to callbacks. + void* pUserData; + + + // Whether or not the WAV file is formatted as a standard RIFF file or W64. + drwav_container container; + + + // Structure containing format information exactly as specified by the wav file. + drwav_fmt fmt; + + // The sample rate. Will be set to something like 44100. + drwav_uint32 sampleRate; + + // The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. + drwav_uint16 channels; + + // The bits per sample. Will be set to something like 16, 24, etc. + drwav_uint16 bitsPerSample; + + // The number of bytes per sample. + drwav_uint16 bytesPerSample; + + // Equal to fmt.formatTag, or the value specified by fmt.subFormat if fmt.formatTag is equal to 65534 (WAVE_FORMAT_EXTENSIBLE). + drwav_uint16 translatedFormatTag; + + // The total number of samples making up the audio data. Use <totalSampleCount> * <bytesPerSample> to calculate + // the required size of a buffer to hold the entire audio data. + drwav_uint64 totalSampleCount; + + + // The size in bytes of the data chunk. + drwav_uint64 dataChunkDataSize; + + // The position in the stream of the first byte of the data chunk. This is used for seeking. + drwav_uint64 dataChunkDataPos; + + // The number of bytes remaining in the data chunk. + drwav_uint64 bytesRemaining; + + + // Only used in sequential write mode. Keeps track of the desired size of the "data" chunk at the point of initialization time. Always + // set to 0 for non-sequential writes and when the drwav object is opened in read mode. Used for validation. + drwav_uint64 dataChunkDataSizeTargetWrite; + + // Keeps track of whether or not the wav writer was initialized in sequential mode. + drwav_bool32 isSequentialWrite; + + + // A hack to avoid a DRWAV_MALLOC() when opening a decoder with drwav_open_memory(). + drwav__memory_stream memoryStream; + drwav__memory_stream_write memoryStreamWrite; + + // Generic data for compressed formats. This data is shared across all block-compressed formats. + struct + { + drwav_uint64 iCurrentSample; // The index of the next sample that will be read by drwav_read_*(). This is used with "totalSampleCount" to ensure we don't read excess samples at the end of the last block. + } compressed; + + // Microsoft ADPCM specific data. + struct + { + drwav_uint32 bytesRemainingInBlock; + drwav_uint16 predictor[2]; + drwav_int32 delta[2]; + drwav_int32 cachedSamples[4]; // Samples are stored in this cache during decoding. + drwav_uint32 cachedSampleCount; + drwav_int32 prevSamples[2][2]; // The previous 2 samples for each channel (2 channels at most). + } msadpcm; + + // IMA ADPCM specific data. + struct + { + drwav_uint32 bytesRemainingInBlock; + drwav_int32 predictor[2]; + drwav_int32 stepIndex[2]; + drwav_int32 cachedSamples[16]; // Samples are stored in this cache during decoding. + drwav_uint32 cachedSampleCount; + } ima; +} drwav; + + +// Initializes a pre-allocated drwav object. +// +// onRead [in] The function to call when data needs to be read from the client. +// onSeek [in] The function to call when the read position of the client data needs to move. +// pUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek. +// +// Returns true if successful; false otherwise. +// +// Close the loader with drwav_uninit(). +// +// This is the lowest level function for initializing a WAV file. You can also use drwav_init_file() and drwav_init_memory() +// to open the stream from a file or from a block of memory respectively. +// +// If you want dr_wav to manage the memory allocation for you, consider using drwav_open() instead. This will allocate +// a drwav object on the heap and return a pointer to it. +// +// See also: drwav_init_file(), drwav_init_memory(), drwav_uninit() +drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData); + +// Initializes a pre-allocated drwav object for writing. +// +// onWrite [in] The function to call when data needs to be written. +// onSeek [in] The function to call when the write position needs to move. +// pUserData [in, optional] A pointer to application defined data that will be passed to onWrite and onSeek. +// +// Returns true if successful; false otherwise. +// +// Close the writer with drwav_uninit(). +// +// This is the lowest level function for initializing a WAV file. You can also use drwav_init_file() and drwav_init_memory() +// to open the stream from a file or from a block of memory respectively. +// +// If the total sample count is known, you can use drwav_init_write_sequential(). This avoids the need for dr_wav to perform +// a post-processing step for storing the total sample count and the size of the data chunk which requires a backwards seek. +// +// If you want dr_wav to manage the memory allocation for you, consider using drwav_open() instead. This will allocate +// a drwav object on the heap and return a pointer to it. +// +// See also: drwav_init_file_write(), drwav_init_memory_write(), drwav_uninit() +drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData); +drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData); + +// Uninitializes the given drwav object. +// +// Use this only for objects initialized with drwav_init(). +void drwav_uninit(drwav* pWav); + + +// Opens a wav file using the given callbacks. +// +// onRead [in] The function to call when data needs to be read from the client. +// onSeek [in] The function to call when the read position of the client data needs to move. +// pUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek. +// +// Returns null on error. +// +// Close the loader with drwav_close(). +// +// You can also use drwav_open_file() and drwav_open_memory() to open the stream from a file or from a block of +// memory respectively. +// +// This is different from drwav_init() in that it will allocate the drwav object for you via DRWAV_MALLOC() before +// initializing it. +// +// See also: drwav_open_file(), drwav_open_memory(), drwav_close() +drwav* drwav_open(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData); + +// Opens a wav file for writing using the given callbacks. +// +// onWrite [in] The function to call when data needs to be written. +// onSeek [in] The function to call when the write position needs to move. +// pUserData [in, optional] A pointer to application defined data that will be passed to onWrite and onSeek. +// +// Returns null on error. +// +// Close the loader with drwav_close(). +// +// You can also use drwav_open_file_write() and drwav_open_memory_write() to open the stream from a file or from a block +// of memory respectively. +// +// This is different from drwav_init_write() in that it will allocate the drwav object for you via DRWAV_MALLOC() before +// initializing it. +// +// See also: drwav_open_file_write(), drwav_open_memory_write(), drwav_close() +drwav* drwav_open_write(const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData); +drwav* drwav_open_write_sequential(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData); + +// Uninitializes and deletes the the given drwav object. +// +// Use this only for objects created with drwav_open(). +void drwav_close(drwav* pWav); + + +// Reads raw audio data. +// +// This is the lowest level function for reading audio data. It simply reads the given number of +// bytes of the raw internal sample data. +// +// Consider using drwav_read_s16(), drwav_read_s32() or drwav_read_f32() for reading sample data in +// a consistent format. +// +// Returns the number of bytes actually read. +size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut); + +// Reads a chunk of audio data in the native internal format. +// +// This is typically the most efficient way to retrieve audio data, but it does not do any format +// conversions which means you'll need to convert the data manually if required. +// +// If the return value is less than <samplesToRead> it means the end of the file has been reached or +// you have requested more samples than can possibly fit in the output buffer. +// +// This function will only work when sample data is of a fixed size and uncompressed. If you are +// using a compressed format consider using drwav_read_raw() or drwav_read_s16/s32/f32/etc(). +drwav_uint64 drwav_read(drwav* pWav, drwav_uint64 samplesToRead, void* pBufferOut); + +// Seeks to the given sample. +// +// Returns true if successful; false otherwise. +drwav_bool32 drwav_seek_to_sample(drwav* pWav, drwav_uint64 sample); + + +// Writes raw audio data. +// +// Returns the number of bytes actually written. If this differs from bytesToWrite, it indicates an error. +size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData); + +// Writes audio data based on sample counts. +// +// Returns the number of samples written. +drwav_uint64 drwav_write(drwav* pWav, drwav_uint64 samplesToWrite, const void* pData); + + + +//// Conversion Utilities //// +#ifndef DR_WAV_NO_CONVERSION_API + +// Reads a chunk of audio data and converts it to signed 16-bit PCM samples. +// +// Returns the number of samples actually read. +// +// If the return value is less than <samplesToRead> it means the end of the file has been reached. +drwav_uint64 drwav_read_s16(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut); + +// Low-level function for converting unsigned 8-bit PCM samples to signed 16-bit PCM samples. +void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); + +// Low-level function for converting signed 24-bit PCM samples to signed 16-bit PCM samples. +void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); + +// Low-level function for converting signed 32-bit PCM samples to signed 16-bit PCM samples. +void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount); + +// Low-level function for converting IEEE 32-bit floating point samples to signed 16-bit PCM samples. +void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount); + +// Low-level function for converting IEEE 64-bit floating point samples to signed 16-bit PCM samples. +void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount); + +// Low-level function for converting A-law samples to signed 16-bit PCM samples. +void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); + +// Low-level function for converting u-law samples to signed 16-bit PCM samples. +void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); + + +// Reads a chunk of audio data and converts it to IEEE 32-bit floating point samples. +// +// Returns the number of samples actually read. +// +// If the return value is less than <samplesToRead> it means the end of the file has been reached. +drwav_uint64 drwav_read_f32(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut); + +// Low-level function for converting unsigned 8-bit PCM samples to IEEE 32-bit floating point samples. +void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); + +// Low-level function for converting signed 16-bit PCM samples to IEEE 32-bit floating point samples. +void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount); + +// Low-level function for converting signed 24-bit PCM samples to IEEE 32-bit floating point samples. +void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); + +// Low-level function for converting signed 32-bit PCM samples to IEEE 32-bit floating point samples. +void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount); + +// Low-level function for converting IEEE 64-bit floating point samples to IEEE 32-bit floating point samples. +void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount); + +// Low-level function for converting A-law samples to IEEE 32-bit floating point samples. +void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); + +// Low-level function for converting u-law samples to IEEE 32-bit floating point samples. +void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); + + +// Reads a chunk of audio data and converts it to signed 32-bit PCM samples. +// +// Returns the number of samples actually read. +// +// If the return value is less than <samplesToRead> it means the end of the file has been reached. +drwav_uint64 drwav_read_s32(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut); + +// Low-level function for converting unsigned 8-bit PCM samples to signed 32-bit PCM samples. +void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); + +// Low-level function for converting signed 16-bit PCM samples to signed 32-bit PCM samples. +void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount); + +// Low-level function for converting signed 24-bit PCM samples to signed 32-bit PCM samples. +void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); + +// Low-level function for converting IEEE 32-bit floating point samples to signed 32-bit PCM samples. +void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount); + +// Low-level function for converting IEEE 64-bit floating point samples to signed 32-bit PCM samples. +void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount); + +// Low-level function for converting A-law samples to signed 32-bit PCM samples. +void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); + +// Low-level function for converting u-law samples to signed 32-bit PCM samples. +void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); + +#endif //DR_WAV_NO_CONVERSION_API + + +//// High-Level Convenience Helpers //// + +#ifndef DR_WAV_NO_STDIO + +// Helper for initializing a wave file using stdio. +// +// This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav +// objects because the operating system may restrict the number of file handles an application can have open at +// any given time. +drwav_bool32 drwav_init_file(drwav* pWav, const char* filename); + +// Helper for initializing a wave file for writing using stdio. +// +// This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav +// objects because the operating system may restrict the number of file handles an application can have open at +// any given time. +drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat); +drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount); + +// Helper for opening a wave file using stdio. +// +// This holds the internal FILE object until drwav_close() is called. Keep this in mind if you're caching drwav +// objects because the operating system may restrict the number of file handles an application can have open at +// any given time. +drwav* drwav_open_file(const char* filename); + +// Helper for opening a wave file for writing using stdio. +// +// This holds the internal FILE object until drwav_close() is called. Keep this in mind if you're caching drwav +// objects because the operating system may restrict the number of file handles an application can have open at +// any given time. +drwav* drwav_open_file_write(const char* filename, const drwav_data_format* pFormat); +drwav* drwav_open_file_write_sequential(const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount); + +#endif //DR_WAV_NO_STDIO + +// Helper for initializing a loader from a pre-allocated memory buffer. +// +// This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for +// the lifetime of the drwav object. +// +// The buffer should contain the contents of the entire wave file, not just the sample data. +drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize); + +// Helper for initializing a writer which outputs data to a memory buffer. +// +// dr_wav will manage the memory allocations, however it is up to the caller to free the data with drwav_free(). +// +// The buffer will remain allocated even after drwav_uninit() is called. Indeed, the buffer should not be +// considered valid until after drwav_uninit() has been called anyway. +drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat); +drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount); + +// Helper for opening a loader from a pre-allocated memory buffer. +// +// This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for +// the lifetime of the drwav object. +// +// The buffer should contain the contents of the entire wave file, not just the sample data. +drwav* drwav_open_memory(const void* data, size_t dataSize); + +// Helper for opening a writer which outputs data to a memory buffer. +// +// dr_wav will manage the memory allocations, however it is up to the caller to free the data with drwav_free(). +// +// The buffer will remain allocated even after drwav_close() is called. Indeed, the buffer should not be +// considered valid until after drwav_close() has been called anyway. +drwav* drwav_open_memory_write(void** ppData, size_t* pDataSize, const drwav_data_format* pFormat); +drwav* drwav_open_memory_write_sequential(void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount); + + +#ifndef DR_WAV_NO_CONVERSION_API +// Opens and reads a wav file in a single operation. +drwav_int16* drwav_open_and_read_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount); +float* drwav_open_and_read_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount); +drwav_int32* drwav_open_and_read_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount); +#ifndef DR_WAV_NO_STDIO +// Opens and decodes a wav file in a single operation. +drwav_int16* drwav_open_and_read_file_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount); +float* drwav_open_and_read_file_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount); +drwav_int32* drwav_open_and_read_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount); +#endif + +// Opens and decodes a wav file from a block of memory in a single operation. +drwav_int16* drwav_open_and_read_memory_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount); +float* drwav_open_and_read_memory_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount); +drwav_int32* drwav_open_and_read_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount); +#endif + +// Frees data that was allocated internally by dr_wav. +void drwav_free(void* pDataReturnedByOpenAndRead); + +#ifdef __cplusplus +} +#endif +#endif // dr_wav_h + + +///////////////////////////////////////////////////// +// +// IMPLEMENTATION +// +///////////////////////////////////////////////////// + +#ifdef DR_WAV_IMPLEMENTATION +#include <stdlib.h> +#include <string.h> // For memcpy(), memset() +#include <limits.h> // For INT_MAX + +#ifndef DR_WAV_NO_STDIO +#include <stdio.h> +#endif + +// Standard library stuff. +#ifndef DRWAV_ASSERT +#include <assert.h> +#define DRWAV_ASSERT(expression) assert(expression) +#endif +#ifndef DRWAV_MALLOC +#define DRWAV_MALLOC(sz) malloc((sz)) +#endif +#ifndef DRWAV_REALLOC +#define DRWAV_REALLOC(p, sz) realloc((p), (sz)) +#endif +#ifndef DRWAV_FREE +#define DRWAV_FREE(p) free((p)) +#endif +#ifndef DRWAV_COPY_MEMORY +#define DRWAV_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) +#endif +#ifndef DRWAV_ZERO_MEMORY +#define DRWAV_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) +#endif + +#define drwav_countof(x) (sizeof(x) / sizeof(x[0])) +#define drwav_align(x, a) ((((x) + (a) - 1) / (a)) * (a)) +#define drwav_min(a, b) (((a) < (b)) ? (a) : (b)) +#define drwav_max(a, b) (((a) > (b)) ? (a) : (b)) +#define drwav_clamp(x, lo, hi) (drwav_max((lo), drwav_min((hi), (x)))) + +#define drwav_assert DRWAV_ASSERT +#define drwav_copy_memory DRWAV_COPY_MEMORY +#define drwav_zero_memory DRWAV_ZERO_MEMORY + + +#define DRWAV_MAX_SIMD_VECTOR_SIZE 64 // 64 for AVX-512 in the future. + +#ifdef _MSC_VER +#define DRWAV_INLINE __forceinline +#else +#ifdef __GNUC__ +#define DRWAV_INLINE inline __attribute__((always_inline)) +#else +#define DRWAV_INLINE inline +#endif +#endif + +#if defined(SIZE_MAX) + #define DRWAV_SIZE_MAX SIZE_MAX +#else + #if defined(_WIN64) || defined(_LP64) || defined(__LP64__) + #define DRWAV_SIZE_MAX ((drwav_uint64)0xFFFFFFFFFFFFFFFF) + #else + #define DRWAV_SIZE_MAX 0xFFFFFFFF + #endif +#endif + +static const drwav_uint8 drwavGUID_W64_RIFF[16] = {0x72,0x69,0x66,0x66, 0x2E,0x91, 0xCF,0x11, 0xA5,0xD6, 0x28,0xDB,0x04,0xC1,0x00,0x00}; // 66666972-912E-11CF-A5D6-28DB04C10000 +static const drwav_uint8 drwavGUID_W64_WAVE[16] = {0x77,0x61,0x76,0x65, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; // 65766177-ACF3-11D3-8CD1-00C04F8EDB8A +static const drwav_uint8 drwavGUID_W64_JUNK[16] = {0x6A,0x75,0x6E,0x6B, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; // 6B6E756A-ACF3-11D3-8CD1-00C04F8EDB8A +static const drwav_uint8 drwavGUID_W64_FMT [16] = {0x66,0x6D,0x74,0x20, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; // 20746D66-ACF3-11D3-8CD1-00C04F8EDB8A +static const drwav_uint8 drwavGUID_W64_FACT[16] = {0x66,0x61,0x63,0x74, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; // 74636166-ACF3-11D3-8CD1-00C04F8EDB8A +static const drwav_uint8 drwavGUID_W64_DATA[16] = {0x64,0x61,0x74,0x61, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; // 61746164-ACF3-11D3-8CD1-00C04F8EDB8A + +static DRWAV_INLINE drwav_bool32 drwav__guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]) +{ + const drwav_uint32* a32 = (const drwav_uint32*)a; + const drwav_uint32* b32 = (const drwav_uint32*)b; + + return + a32[0] == b32[0] && + a32[1] == b32[1] && + a32[2] == b32[2] && + a32[3] == b32[3]; +} + +static DRWAV_INLINE drwav_bool32 drwav__fourcc_equal(const unsigned char* a, const char* b) +{ + return + a[0] == b[0] && + a[1] == b[1] && + a[2] == b[2] && + a[3] == b[3]; +} + + + +static DRWAV_INLINE int drwav__is_little_endian() +{ + int n = 1; + return (*(char*)&n) == 1; +} + +static DRWAV_INLINE unsigned short drwav__bytes_to_u16(const unsigned char* data) +{ + return (data[0] << 0) | (data[1] << 8); +} + +static DRWAV_INLINE short drwav__bytes_to_s16(const unsigned char* data) +{ + return (short)drwav__bytes_to_u16(data); +} + +static DRWAV_INLINE unsigned int drwav__bytes_to_u32(const unsigned char* data) +{ + return (data[0] << 0) | (data[1] << 8) | (data[2] << 16) | (data[3] << 24); +} + +static DRWAV_INLINE drwav_uint64 drwav__bytes_to_u64(const unsigned char* data) +{ + return + ((drwav_uint64)data[0] << 0) | ((drwav_uint64)data[1] << 8) | ((drwav_uint64)data[2] << 16) | ((drwav_uint64)data[3] << 24) | + ((drwav_uint64)data[4] << 32) | ((drwav_uint64)data[5] << 40) | ((drwav_uint64)data[6] << 48) | ((drwav_uint64)data[7] << 56); +} + +static DRWAV_INLINE void drwav__bytes_to_guid(const unsigned char* data, drwav_uint8* guid) +{ + for (int i = 0; i < 16; ++i) { + guid[i] = data[i]; + } +} + + +static DRWAV_INLINE drwav_bool32 drwav__is_compressed_format_tag(drwav_uint16 formatTag) +{ + return + formatTag == DR_WAVE_FORMAT_ADPCM || + formatTag == DR_WAVE_FORMAT_DVI_ADPCM; +} + + +drwav_uint64 drwav_read_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut); +drwav_uint64 drwav_read_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut); +drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData); +drwav* drwav_open_write__internal(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData); + +typedef struct +{ + union + { + drwav_uint8 fourcc[4]; + drwav_uint8 guid[16]; + } id; + + // The size in bytes of the chunk. + drwav_uint64 sizeInBytes; + + // RIFF = 2 byte alignment. + // W64 = 8 byte alignment. + unsigned int paddingSize; + +} drwav__chunk_header; + +static drwav_bool32 drwav__read_chunk_header(drwav_read_proc onRead, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav__chunk_header* pHeaderOut) +{ + if (container == drwav_container_riff) { + if (onRead(pUserData, pHeaderOut->id.fourcc, 4) != 4) { + return DRWAV_FALSE; + } + + unsigned char sizeInBytes[4]; + if (onRead(pUserData, sizeInBytes, 4) != 4) { + return DRWAV_FALSE; + } + + pHeaderOut->sizeInBytes = drwav__bytes_to_u32(sizeInBytes); + pHeaderOut->paddingSize = (unsigned int)(pHeaderOut->sizeInBytes % 2); + *pRunningBytesReadOut += 8; + } else { + if (onRead(pUserData, pHeaderOut->id.guid, 16) != 16) { + return DRWAV_FALSE; + } + + unsigned char sizeInBytes[8]; + if (onRead(pUserData, sizeInBytes, 8) != 8) { + return DRWAV_FALSE; + } + + pHeaderOut->sizeInBytes = drwav__bytes_to_u64(sizeInBytes) - 24; // <-- Subtract 24 because w64 includes the size of the header. + pHeaderOut->paddingSize = (unsigned int)(pHeaderOut->sizeInBytes % 8); + *pRunningBytesReadOut += 24; + } + + return DRWAV_TRUE; +} + +static drwav_bool32 drwav__seek_forward(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData) +{ + drwav_uint64 bytesRemainingToSeek = offset; + while (bytesRemainingToSeek > 0) { + if (bytesRemainingToSeek > 0x7FFFFFFF) { + if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + bytesRemainingToSeek -= 0x7FFFFFFF; + } else { + if (!onSeek(pUserData, (int)bytesRemainingToSeek, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + bytesRemainingToSeek = 0; + } + } + + return DRWAV_TRUE; +} + + +static drwav_bool32 drwav__read_fmt(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_fmt* fmtOut) +{ + drwav__chunk_header header; + if (!drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header)) { + return DRWAV_FALSE; + } + + + // Skip non-fmt chunks. + while ((container == drwav_container_riff && !drwav__fourcc_equal(header.id.fourcc, "fmt ")) || (container == drwav_container_w64 && !drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT))) { + if (!drwav__seek_forward(onSeek, header.sizeInBytes + header.paddingSize, pUserData)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += header.sizeInBytes + header.paddingSize; + + // Try the next header. + if (!drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header)) { + return DRWAV_FALSE; + } + } + + + // Validation. + if (container == drwav_container_riff) { + if (!drwav__fourcc_equal(header.id.fourcc, "fmt ")) { + return DRWAV_FALSE; + } + } else { + if (!drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT)) { + return DRWAV_FALSE; + } + } + + + unsigned char fmt[16]; + if (onRead(pUserData, fmt, sizeof(fmt)) != sizeof(fmt)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += sizeof(fmt); + + fmtOut->formatTag = drwav__bytes_to_u16(fmt + 0); + fmtOut->channels = drwav__bytes_to_u16(fmt + 2); + fmtOut->sampleRate = drwav__bytes_to_u32(fmt + 4); + fmtOut->avgBytesPerSec = drwav__bytes_to_u32(fmt + 8); + fmtOut->blockAlign = drwav__bytes_to_u16(fmt + 12); + fmtOut->bitsPerSample = drwav__bytes_to_u16(fmt + 14); + + fmtOut->extendedSize = 0; + fmtOut->validBitsPerSample = 0; + fmtOut->channelMask = 0; + memset(fmtOut->subFormat, 0, sizeof(fmtOut->subFormat)); + + if (header.sizeInBytes > 16) { + unsigned char fmt_cbSize[2]; + if (onRead(pUserData, fmt_cbSize, sizeof(fmt_cbSize)) != sizeof(fmt_cbSize)) { + return DRWAV_FALSE; // Expecting more data. + } + *pRunningBytesReadOut += sizeof(fmt_cbSize); + + int bytesReadSoFar = 18; + + fmtOut->extendedSize = drwav__bytes_to_u16(fmt_cbSize); + if (fmtOut->extendedSize > 0) { + // Simple validation. + if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) { + if (fmtOut->extendedSize != 22) { + return DRWAV_FALSE; + } + } + + if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) { + unsigned char fmtext[22]; + if (onRead(pUserData, fmtext, fmtOut->extendedSize) != fmtOut->extendedSize) { + return DRWAV_FALSE; // Expecting more data. + } + + fmtOut->validBitsPerSample = drwav__bytes_to_u16(fmtext + 0); + fmtOut->channelMask = drwav__bytes_to_u32(fmtext + 2); + drwav__bytes_to_guid(fmtext + 6, fmtOut->subFormat); + } else { + if (!onSeek(pUserData, fmtOut->extendedSize, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + } + *pRunningBytesReadOut += fmtOut->extendedSize; + + bytesReadSoFar += fmtOut->extendedSize; + } + + // Seek past any leftover bytes. For w64 the leftover will be defined based on the chunk size. + if (!onSeek(pUserData, (int)(header.sizeInBytes - bytesReadSoFar), drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += (header.sizeInBytes - bytesReadSoFar); + } + + if (header.paddingSize > 0) { + if (!onSeek(pUserData, header.paddingSize, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + *pRunningBytesReadOut += header.paddingSize; + } + + return DRWAV_TRUE; +} + + +#ifndef DR_WAV_NO_STDIO +FILE* drwav_fopen(const char* filePath, const char* openMode) +{ + FILE* pFile; +#if defined(_MSC_VER) && _MSC_VER >= 1400 + if (fopen_s(&pFile, filePath, openMode) != 0) { + return DRWAV_FALSE; + } +#else + pFile = fopen(filePath, openMode); + if (pFile == NULL) { + return DRWAV_FALSE; + } +#endif + + return pFile; +} + +static size_t drwav__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead) +{ + return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData); +} + +static size_t drwav__on_write_stdio(void* pUserData, const void* pData, size_t bytesToWrite) +{ + return fwrite(pData, 1, bytesToWrite, (FILE*)pUserData); +} + +static drwav_bool32 drwav__on_seek_stdio(void* pUserData, int offset, drwav_seek_origin origin) +{ + return fseek((FILE*)pUserData, offset, (origin == drwav_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; +} + +drwav_bool32 drwav_init_file(drwav* pWav, const char* filename) +{ + FILE* pFile = drwav_fopen(filename, "rb"); + if (pFile == NULL) { + return DRWAV_FALSE; + } + + return drwav_init(pWav, drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile); +} + + +drwav_bool32 drwav_init_file_write__internal(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential) +{ + FILE* pFile = drwav_fopen(filename, "wb"); + if (pFile == NULL) { + return DRWAV_FALSE; + } + + return drwav_init_write__internal(pWav, pFormat, totalSampleCount, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile); +} + +drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat) +{ + return drwav_init_file_write__internal(pWav, filename, pFormat, 0, DRWAV_FALSE); +} + +drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount) +{ + return drwav_init_file_write__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE); +} + +drwav* drwav_open_file(const char* filename) +{ + FILE* pFile = drwav_fopen(filename, "rb"); + if (pFile == NULL) { + return DRWAV_FALSE; + } + + drwav* pWav = drwav_open(drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile); + if (pWav == NULL) { + fclose(pFile); + return NULL; + } + + return pWav; +} + + +drwav* drwav_open_file_write__internal(const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential) +{ + FILE* pFile = drwav_fopen(filename, "wb"); + if (pFile == NULL) { + return DRWAV_FALSE; + } + + drwav* pWav = drwav_open_write__internal(pFormat, totalSampleCount, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile); + if (pWav == NULL) { + fclose(pFile); + return NULL; + } + + return pWav; +} + +drwav* drwav_open_file_write(const char* filename, const drwav_data_format* pFormat) +{ + return drwav_open_file_write__internal(filename, pFormat, 0, DRWAV_FALSE); +} + +drwav* drwav_open_file_write_sequential(const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount) +{ + return drwav_open_file_write__internal(filename, pFormat, totalSampleCount, DRWAV_TRUE); +} +#endif //DR_WAV_NO_STDIO + + +static size_t drwav__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead) +{ + drwav__memory_stream* memory = (drwav__memory_stream*)pUserData; + drwav_assert(memory != NULL); + drwav_assert(memory->dataSize >= memory->currentReadPos); + + size_t bytesRemaining = memory->dataSize - memory->currentReadPos; + if (bytesToRead > bytesRemaining) { + bytesToRead = bytesRemaining; + } + + if (bytesToRead > 0) { + DRWAV_COPY_MEMORY(pBufferOut, memory->data + memory->currentReadPos, bytesToRead); + memory->currentReadPos += bytesToRead; + } + + return bytesToRead; +} + +static drwav_bool32 drwav__on_seek_memory(void* pUserData, int offset, drwav_seek_origin origin) +{ + drwav__memory_stream* memory = (drwav__memory_stream*)pUserData; + drwav_assert(memory != NULL); + + if (origin == drwav_seek_origin_current) { + if (offset > 0) { + if (memory->currentReadPos + offset > memory->dataSize) { + return DRWAV_FALSE; // Trying to seek too far forward. + } + } else { + if (memory->currentReadPos < (size_t)-offset) { + return DRWAV_FALSE; // Trying to seek too far backwards. + } + } + + // This will never underflow thanks to the clamps above. + memory->currentReadPos += offset; + } else { + if ((drwav_uint32)offset <= memory->dataSize) { + memory->currentReadPos = offset; + } else { + return DRWAV_FALSE; // Trying to seek too far forward. + } + } + + return DRWAV_TRUE; +} + +static size_t drwav__on_write_memory(void* pUserData, const void* pDataIn, size_t bytesToWrite) +{ + drwav__memory_stream_write* memory = (drwav__memory_stream_write*)pUserData; + drwav_assert(memory != NULL); + drwav_assert(memory->dataCapacity >= memory->currentWritePos); + + size_t bytesRemaining = memory->dataCapacity - memory->currentWritePos; + if (bytesRemaining < bytesToWrite) { + // Need to reallocate. + size_t newDataCapacity = (memory->dataCapacity == 0) ? 256 : memory->dataCapacity * 2; + + // If doubling wasn't enough, just make it the minimum required size to write the data. + if ((newDataCapacity - memory->currentWritePos) < bytesToWrite) { + newDataCapacity = memory->currentWritePos + bytesToWrite; + } + + void* pNewData = DRWAV_REALLOC(*memory->ppData, newDataCapacity); + if (pNewData == NULL) { + return 0; + } + + *memory->ppData = pNewData; + memory->dataCapacity = newDataCapacity; + } + + drwav_uint8* pDataOut = (drwav_uint8*)(*memory->ppData); + DRWAV_COPY_MEMORY(pDataOut + memory->currentWritePos, pDataIn, bytesToWrite); + + memory->currentWritePos += bytesToWrite; + if (memory->dataSize < memory->currentWritePos) { + memory->dataSize = memory->currentWritePos; + } + + *memory->pDataSize = memory->dataSize; + + return bytesToWrite; +} + +static drwav_bool32 drwav__on_seek_memory_write(void* pUserData, int offset, drwav_seek_origin origin) +{ + drwav__memory_stream_write* memory = (drwav__memory_stream_write*)pUserData; + drwav_assert(memory != NULL); + + if (origin == drwav_seek_origin_current) { + if (offset > 0) { + if (memory->currentWritePos + offset > memory->dataSize) { + offset = (int)(memory->dataSize - memory->currentWritePos); // Trying to seek too far forward. + } + } else { + if (memory->currentWritePos < (size_t)-offset) { + offset = -(int)memory->currentWritePos; // Trying to seek too far backwards. + } + } + + // This will never underflow thanks to the clamps above. + memory->currentWritePos += offset; + } else { + if ((drwav_uint32)offset <= memory->dataSize) { + memory->currentWritePos = offset; + } else { + memory->currentWritePos = memory->dataSize; // Trying to seek too far forward. + } + } + + return DRWAV_TRUE; +} + +drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize) +{ + if (data == NULL || dataSize == 0) { + return DRWAV_FALSE; + } + + drwav__memory_stream memoryStream; + drwav_zero_memory(&memoryStream, sizeof(memoryStream)); + memoryStream.data = (const unsigned char*)data; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + + if (!drwav_init(pWav, drwav__on_read_memory, drwav__on_seek_memory, (void*)&memoryStream)) { + return DRWAV_FALSE; + } + + pWav->memoryStream = memoryStream; + pWav->pUserData = &pWav->memoryStream; + return DRWAV_TRUE; +} + + +drwav_bool32 drwav_init_memory_write__internal(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential) +{ + if (ppData == NULL) { + return DRWAV_FALSE; + } + + *ppData = NULL; // Important because we're using realloc()! + *pDataSize = 0; + + drwav__memory_stream_write memoryStreamWrite; + drwav_zero_memory(&memoryStreamWrite, sizeof(memoryStreamWrite)); + memoryStreamWrite.ppData = ppData; + memoryStreamWrite.pDataSize = pDataSize; + memoryStreamWrite.dataSize = 0; + memoryStreamWrite.dataCapacity = 0; + memoryStreamWrite.currentWritePos = 0; + + if (!drwav_init_write__internal(pWav, pFormat, totalSampleCount, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, (void*)&memoryStreamWrite)) { + return DRWAV_FALSE; + } + + pWav->memoryStreamWrite = memoryStreamWrite; + pWav->pUserData = &pWav->memoryStreamWrite; + return DRWAV_TRUE; +} + +drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat) +{ + return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, 0, DRWAV_FALSE); +} + +drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount) +{ + return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE); +} + + +drwav* drwav_open_memory(const void* data, size_t dataSize) +{ + if (data == NULL || dataSize == 0) { + return NULL; + } + + drwav__memory_stream memoryStream; + drwav_zero_memory(&memoryStream, sizeof(memoryStream)); + memoryStream.data = (const unsigned char*)data; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + + drwav* pWav = drwav_open(drwav__on_read_memory, drwav__on_seek_memory, (void*)&memoryStream); + if (pWav == NULL) { + return NULL; + } + + pWav->memoryStream = memoryStream; + pWav->pUserData = &pWav->memoryStream; + return pWav; +} + + +drwav* drwav_open_memory_write__internal(void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential) +{ + if (ppData == NULL) { + return NULL; + } + + *ppData = NULL; // Important because we're using realloc()! + *pDataSize = 0; + + drwav__memory_stream_write memoryStreamWrite; + drwav_zero_memory(&memoryStreamWrite, sizeof(memoryStreamWrite)); + memoryStreamWrite.ppData = ppData; + memoryStreamWrite.pDataSize = pDataSize; + memoryStreamWrite.dataSize = 0; + memoryStreamWrite.dataCapacity = 0; + memoryStreamWrite.currentWritePos = 0; + + drwav* pWav = drwav_open_write__internal(pFormat, totalSampleCount, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, (void*)&memoryStreamWrite); + if (pWav == NULL) { + return NULL; + } + + pWav->memoryStreamWrite = memoryStreamWrite; + pWav->pUserData = &pWav->memoryStreamWrite; + return pWav; +} + +drwav* drwav_open_memory_write(void** ppData, size_t* pDataSize, const drwav_data_format* pFormat) +{ + return drwav_open_memory_write__internal(ppData, pDataSize, pFormat, 0, DRWAV_FALSE); +} + +drwav* drwav_open_memory_write_sequential(void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount) +{ + return drwav_open_memory_write__internal(ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE); +} + + +drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData) +{ + if (onRead == NULL || onSeek == NULL) { + return DRWAV_FALSE; + } + + drwav_zero_memory(pWav, sizeof(*pWav)); + + + // The first 4 bytes should be the RIFF identifier. + unsigned char riff[4]; + if (onRead(pUserData, riff, sizeof(riff)) != sizeof(riff)) { + return DRWAV_FALSE; // Failed to read data. + } + + // The first 4 bytes can be used to identify the container. For RIFF files it will start with "RIFF" and for + // w64 it will start with "riff". + if (drwav__fourcc_equal(riff, "RIFF")) { + pWav->container = drwav_container_riff; + } else if (drwav__fourcc_equal(riff, "riff")) { + pWav->container = drwav_container_w64; + + // Check the rest of the GUID for validity. + drwav_uint8 riff2[12]; + if (onRead(pUserData, riff2, sizeof(riff2)) != sizeof(riff2)) { + return DRWAV_FALSE; + } + + for (int i = 0; i < 12; ++i) { + if (riff2[i] != drwavGUID_W64_RIFF[i+4]) { + return DRWAV_FALSE; + } + } + } else { + return DRWAV_FALSE; // Unknown or unsupported container. + } + + + if (pWav->container == drwav_container_riff) { + // RIFF/WAVE + unsigned char chunkSizeBytes[4]; + if (onRead(pUserData, chunkSizeBytes, sizeof(chunkSizeBytes)) != sizeof(chunkSizeBytes)) { + return DRWAV_FALSE; + } + + unsigned int chunkSize = drwav__bytes_to_u32(chunkSizeBytes); + if (chunkSize < 36) { + return DRWAV_FALSE; // Chunk size should always be at least 36 bytes. + } + + unsigned char wave[4]; + if (onRead(pUserData, wave, sizeof(wave)) != sizeof(wave)) { + return DRWAV_FALSE; + } + + if (!drwav__fourcc_equal(wave, "WAVE")) { + return DRWAV_FALSE; // Expecting "WAVE". + } + + pWav->dataChunkDataPos = 4 + sizeof(chunkSizeBytes) + sizeof(wave); + } else { + // W64 + unsigned char chunkSize[8]; + if (onRead(pUserData, chunkSize, sizeof(chunkSize)) != sizeof(chunkSize)) { + return DRWAV_FALSE; + } + + if (drwav__bytes_to_u64(chunkSize) < 80) { + return DRWAV_FALSE; + } + + drwav_uint8 wave[16]; + if (onRead(pUserData, wave, sizeof(wave)) != sizeof(wave)) { + return DRWAV_FALSE; + } + + if (!drwav__guid_equal(wave, drwavGUID_W64_WAVE)) { + return DRWAV_FALSE; + } + + pWav->dataChunkDataPos = 16 + sizeof(chunkSize) + sizeof(wave); + } + + + // The next bytes should be the "fmt " chunk. + drwav_fmt fmt; + if (!drwav__read_fmt(onRead, onSeek, pUserData, pWav->container, &pWav->dataChunkDataPos, &fmt)) { + return DRWAV_FALSE; // Failed to read the "fmt " chunk. + } + + // Basic validation. + if (fmt.sampleRate == 0 || fmt.channels == 0 || fmt.bitsPerSample == 0 || fmt.blockAlign == 0) { + return DRWAV_FALSE; // Invalid channel count. Probably an invalid WAV file. + } + + + // Translate the internal format. + unsigned short translatedFormatTag = fmt.formatTag; + if (translatedFormatTag == DR_WAVE_FORMAT_EXTENSIBLE) { + translatedFormatTag = drwav__bytes_to_u16(fmt.subFormat + 0); + } + + + drwav_uint64 sampleCountFromFactChunk = 0; + + // The next chunk we care about is the "data" chunk. This is not necessarily the next chunk so we'll need to loop. + drwav_uint64 dataSize; + for (;;) + { + drwav__chunk_header header; + if (!drwav__read_chunk_header(onRead, pUserData, pWav->container, &pWav->dataChunkDataPos, &header)) { + return DRWAV_FALSE; + } + + dataSize = header.sizeInBytes; + if (pWav->container == drwav_container_riff) { + if (drwav__fourcc_equal(header.id.fourcc, "data")) { + break; + } + } else { + if (drwav__guid_equal(header.id.guid, drwavGUID_W64_DATA)) { + break; + } + } + + // Optional. Get the total sample count from the FACT chunk. This is useful for compressed formats. + if (pWav->container == drwav_container_riff) { + if (drwav__fourcc_equal(header.id.fourcc, "fact")) { + drwav_uint32 sampleCount; + if (onRead(pUserData, &sampleCount, 4) != 4) { + return DRWAV_FALSE; + } + pWav->dataChunkDataPos += 4; + dataSize -= 4; + + // The sample count in the "fact" chunk is either unreliable, or I'm not understanding it properly. For now I am only enabling this + // for Microsoft ADPCM formats. + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + sampleCountFromFactChunk = sampleCount; + } else { + sampleCountFromFactChunk = 0; + } + } + } else { + if (drwav__guid_equal(header.id.guid, drwavGUID_W64_FACT)) { + if (onRead(pUserData, &sampleCountFromFactChunk, 8) != 8) { + return DRWAV_FALSE; + } + pWav->dataChunkDataPos += 8; + dataSize -= 8; + } + } + + // If we get here it means we didn't find the "data" chunk. Seek past it. + + // Make sure we seek past the padding. + dataSize += header.paddingSize; + drwav__seek_forward(onSeek, dataSize, pUserData); + pWav->dataChunkDataPos += dataSize; + } + + // At this point we should be sitting on the first byte of the raw audio data. + + pWav->onRead = onRead; + pWav->onSeek = onSeek; + pWav->pUserData = pUserData; + pWav->fmt = fmt; + pWav->sampleRate = fmt.sampleRate; + pWav->channels = fmt.channels; + pWav->bitsPerSample = fmt.bitsPerSample; + pWav->bytesPerSample = fmt.blockAlign / fmt.channels; + pWav->bytesRemaining = dataSize; + pWav->translatedFormatTag = translatedFormatTag; + pWav->dataChunkDataSize = dataSize; + + // The bytes per sample should never be 0 at this point. This would indicate an invalid WAV file. + if (pWav->bytesPerSample == 0) { + return DRWAV_FALSE; + } + + if (sampleCountFromFactChunk != 0) { + pWav->totalSampleCount = sampleCountFromFactChunk * fmt.channels; + } else { + pWav->totalSampleCount = dataSize / pWav->bytesPerSample; + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + drwav_uint64 blockCount = dataSize / fmt.blockAlign; + pWav->totalSampleCount = (blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2; // x2 because two samples per byte. + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + drwav_uint64 blockCount = dataSize / fmt.blockAlign; + pWav->totalSampleCount = ((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels); + } + } + + // The way we calculate the bytes per sample does not make sense for compressed formats so we just set it to 0. + if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { + pWav->bytesPerSample = 0; + } + + // Some formats only support a certain number of channels. + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + if (pWav->channels > 2) { + return DRWAV_FALSE; + } + } + +#ifdef DR_WAV_LIBSNDFILE_COMPAT + // I use libsndfile as a benchmark for testing, however in the version I'm using (from the Windows installer on the libsndfile website), + // it appears the total sample count libsndfile uses for MS-ADPCM is incorrect. It would seem they are computing the total sample count + // from the number of blocks, however this results in the inclusion of extra silent samples at the end of the last block. The correct + // way to know the total sample count is to inspect the "fact" chunk, which should always be present for compressed formats, and should + // always include the sample count. This little block of code below is only used to emulate the libsndfile logic so I can properly run my + // correctness tests against libsndfile, and is disabled by default. + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + drwav_uint64 blockCount = dataSize / fmt.blockAlign; + pWav->totalSampleCount = (blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2; // x2 because two samples per byte. + } + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + drwav_uint64 blockCount = dataSize / fmt.blockAlign; + pWav->totalSampleCount = ((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels); + } +#endif + + return DRWAV_TRUE; +} + + +drwav_uint32 drwav_riff_chunk_size_riff(drwav_uint64 dataChunkSize) +{ + if (dataChunkSize <= (0xFFFFFFFF - 36)) { + return 36 + (drwav_uint32)dataChunkSize; + } else { + return 0xFFFFFFFF; + } +} + +drwav_uint32 drwav_data_chunk_size_riff(drwav_uint64 dataChunkSize) +{ + if (dataChunkSize <= 0xFFFFFFFF) { + return (drwav_uint32)dataChunkSize; + } else { + return 0xFFFFFFFF; + } +} + +drwav_uint64 drwav_riff_chunk_size_w64(drwav_uint64 dataChunkSize) +{ + return 80 + 24 + dataChunkSize; // +24 because W64 includes the size of the GUID and size fields. +} + +drwav_uint64 drwav_data_chunk_size_w64(drwav_uint64 dataChunkSize) +{ + return 24 + dataChunkSize; // +24 because W64 includes the size of the GUID and size fields. +} + + +drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData) +{ + if (pWav == NULL) { + return DRWAV_FALSE; + } + + if (onWrite == NULL) { + return DRWAV_FALSE; + } + + if (!isSequential && onSeek == NULL) { + return DRWAV_FALSE; // <-- onSeek is required when in non-sequential mode. + } + + + // Not currently supporting compressed formats. Will need to add support for the "fact" chunk before we enable this. + if (pFormat->format == DR_WAVE_FORMAT_EXTENSIBLE) { + return DRWAV_FALSE; + } + if (pFormat->format == DR_WAVE_FORMAT_ADPCM || pFormat->format == DR_WAVE_FORMAT_DVI_ADPCM) { + return DRWAV_FALSE; + } + + + drwav_zero_memory(pWav, sizeof(*pWav)); + pWav->onWrite = onWrite; + pWav->onSeek = onSeek; + pWav->pUserData = pUserData; + pWav->fmt.formatTag = (drwav_uint16)pFormat->format; + pWav->fmt.channels = (drwav_uint16)pFormat->channels; + pWav->fmt.sampleRate = pFormat->sampleRate; + pWav->fmt.avgBytesPerSec = (drwav_uint32)((pFormat->bitsPerSample * pFormat->sampleRate * pFormat->channels) / 8); + pWav->fmt.blockAlign = (drwav_uint16)((pFormat->channels * pFormat->bitsPerSample) / 8); + pWav->fmt.bitsPerSample = (drwav_uint16)pFormat->bitsPerSample; + pWav->fmt.extendedSize = 0; + pWav->isSequentialWrite = isSequential; + + + size_t runningPos = 0; + + // The initial values for the "RIFF" and "data" chunks depends on whether or not we are initializing in sequential mode or not. In + // sequential mode we set this to its final values straight away since they can be calculated from the total sample count. In non- + // sequential mode we initialize it all to zero and fill it out in drwav_uninit() using a backwards seek. + drwav_uint64 initialDataChunkSize = 0; + if (isSequential) { + initialDataChunkSize = (totalSampleCount * pWav->fmt.bitsPerSample) / 8; + + // The RIFF container has a limit on the number of samples. drwav is not allowing this. There's no practical limits for Wave64 + // so for the sake of simplicity I'm not doing any validation for that. + if (pFormat->container == drwav_container_riff) { + if (initialDataChunkSize > (0xFFFFFFFF - 36)) { + return DRWAV_FALSE; // Not enough room to store every sample. + } + } + } + + pWav->dataChunkDataSizeTargetWrite = initialDataChunkSize; + + + // "RIFF" chunk. + if (pFormat->container == drwav_container_riff) { + drwav_uint32 chunkSizeRIFF = 36 + (drwav_uint32)initialDataChunkSize; // +36 = "RIFF"+[RIFF Chunk Size]+"WAVE" + [sizeof "fmt " chunk] + runningPos += pWav->onWrite(pUserData, "RIFF", 4); + runningPos += pWav->onWrite(pUserData, &chunkSizeRIFF, 4); + runningPos += pWav->onWrite(pUserData, "WAVE", 4); + } else { + drwav_uint64 chunkSizeRIFF = 80 + 24 + initialDataChunkSize; // +24 because W64 includes the size of the GUID and size fields. + runningPos += pWav->onWrite(pUserData, drwavGUID_W64_RIFF, 16); + runningPos += pWav->onWrite(pUserData, &chunkSizeRIFF, 8); + runningPos += pWav->onWrite(pUserData, drwavGUID_W64_WAVE, 16); + } + + // "fmt " chunk. + drwav_uint64 chunkSizeFMT; + if (pFormat->container == drwav_container_riff) { + chunkSizeFMT = 16; + runningPos += pWav->onWrite(pUserData, "fmt ", 4); + runningPos += pWav->onWrite(pUserData, &chunkSizeFMT, 4); + } else { + chunkSizeFMT = 40; + runningPos += pWav->onWrite(pUserData, drwavGUID_W64_FMT, 16); + runningPos += pWav->onWrite(pUserData, &chunkSizeFMT, 8); + } + + runningPos += pWav->onWrite(pUserData, &pWav->fmt.formatTag, 2); + runningPos += pWav->onWrite(pUserData, &pWav->fmt.channels, 2); + runningPos += pWav->onWrite(pUserData, &pWav->fmt.sampleRate, 4); + runningPos += pWav->onWrite(pUserData, &pWav->fmt.avgBytesPerSec, 4); + runningPos += pWav->onWrite(pUserData, &pWav->fmt.blockAlign, 2); + runningPos += pWav->onWrite(pUserData, &pWav->fmt.bitsPerSample, 2); + + pWav->dataChunkDataPos = runningPos; + + // "data" chunk. + if (pFormat->container == drwav_container_riff) { + drwav_uint32 chunkSizeDATA = (drwav_uint32)initialDataChunkSize; + runningPos += pWav->onWrite(pUserData, "data", 4); + runningPos += pWav->onWrite(pUserData, &chunkSizeDATA, 4); + } else { + drwav_uint64 chunkSizeDATA = 24 + initialDataChunkSize; // +24 because W64 includes the size of the GUID and size fields. + runningPos += pWav->onWrite(pUserData, drwavGUID_W64_DATA, 16); + runningPos += pWav->onWrite(pUserData, &chunkSizeDATA, 8); + } + + + // Simple validation. + if (pFormat->container == drwav_container_riff) { + if (runningPos != 20 + chunkSizeFMT + 8) { + return DRWAV_FALSE; + } + } else { + if (runningPos != 40 + chunkSizeFMT + 24) { + return DRWAV_FALSE; + } + } + + + + // Set some properties for the client's convenience. + pWav->container = pFormat->container; + pWav->channels = (drwav_uint16)pFormat->channels; + pWav->sampleRate = pFormat->sampleRate; + pWav->bitsPerSample = (drwav_uint16)pFormat->bitsPerSample; + pWav->bytesPerSample = (drwav_uint16)(pFormat->bitsPerSample >> 3); + pWav->translatedFormatTag = (drwav_uint16)pFormat->format; + + return DRWAV_TRUE; +} + + +drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData) +{ + return drwav_init_write__internal(pWav, pFormat, 0, DRWAV_FALSE, onWrite, onSeek, pUserData); // DRWAV_FALSE = Not Sequential +} + +drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData) +{ + return drwav_init_write__internal(pWav, pFormat, totalSampleCount, DRWAV_TRUE, onWrite, NULL, pUserData); // DRWAV_TRUE = Sequential +} + +void drwav_uninit(drwav* pWav) +{ + if (pWav == NULL) { + return; + } + + // If the drwav object was opened in write mode we'll need to finalize a few things: + // - Make sure the "data" chunk is aligned to 16-bits for RIFF containers, or 64 bits for W64 containers. + // - Set the size of the "data" chunk. + if (pWav->onWrite != NULL) { + // Validation for sequential mode. + if (pWav->isSequentialWrite) { + drwav_assert(pWav->dataChunkDataSize == pWav->dataChunkDataSizeTargetWrite); + } + + // Padding. Do not adjust pWav->dataChunkDataSize - this should not include the padding. + drwav_uint32 paddingSize = 0; + if (pWav->container == drwav_container_riff) { + paddingSize = (drwav_uint32)(pWav->dataChunkDataSize % 2); + } else { + paddingSize = (drwav_uint32)(pWav->dataChunkDataSize % 8); + } + + if (paddingSize > 0) { + drwav_uint64 paddingData = 0; + pWav->onWrite(pWav->pUserData, &paddingData, paddingSize); + } + + + // Chunk sizes. When using sequential mode, these will have been filled in at initialization time. We only need + // to do this when using non-sequential mode. + if (pWav->onSeek && !pWav->isSequentialWrite) { + if (pWav->container == drwav_container_riff) { + // The "RIFF" chunk size. + if (pWav->onSeek(pWav->pUserData, 4, drwav_seek_origin_start)) { + drwav_uint32 riffChunkSize = drwav_riff_chunk_size_riff(pWav->dataChunkDataSize); + pWav->onWrite(pWav->pUserData, &riffChunkSize, 4); + } + + // the "data" chunk size. + if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 4, drwav_seek_origin_start)) { + drwav_uint32 dataChunkSize = drwav_data_chunk_size_riff(pWav->dataChunkDataSize); + pWav->onWrite(pWav->pUserData, &dataChunkSize, 4); + } + } else { + // The "RIFF" chunk size. + if (pWav->onSeek(pWav->pUserData, 16, drwav_seek_origin_start)) { + drwav_uint64 riffChunkSize = drwav_riff_chunk_size_w64(pWav->dataChunkDataSize); + pWav->onWrite(pWav->pUserData, &riffChunkSize, 8); + } + + // The "data" chunk size. + if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 16, drwav_seek_origin_start)) { + drwav_uint64 dataChunkSize = drwav_data_chunk_size_w64(pWav->dataChunkDataSize); + pWav->onWrite(pWav->pUserData, &dataChunkSize, 8); + } + } + } + } + +#ifndef DR_WAV_NO_STDIO + // If we opened the file with drwav_open_file() we will want to close the file handle. We can know whether or not drwav_open_file() + // was used by looking at the onRead and onSeek callbacks. + if (pWav->onRead == drwav__on_read_stdio || pWav->onWrite == drwav__on_write_stdio) { + fclose((FILE*)pWav->pUserData); + } +#endif +} + + +drwav* drwav_open(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData) +{ + drwav* pWav = (drwav*)DRWAV_MALLOC(sizeof(*pWav)); + if (pWav == NULL) { + return NULL; + } + + if (!drwav_init(pWav, onRead, onSeek, pUserData)) { + DRWAV_FREE(pWav); + return NULL; + } + + return pWav; +} + + +drwav* drwav_open_write__internal(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData) +{ + drwav* pWav = (drwav*)DRWAV_MALLOC(sizeof(*pWav)); + if (pWav == NULL) { + return NULL; + } + + if (!drwav_init_write__internal(pWav, pFormat, totalSampleCount, isSequential, onWrite, onSeek, pUserData)) { + DRWAV_FREE(pWav); + return NULL; + } + + return pWav; +} + +drwav* drwav_open_write(const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData) +{ + return drwav_open_write__internal(pFormat, 0, DRWAV_FALSE, onWrite, onSeek, pUserData); +} + +drwav* drwav_open_write_sequential(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData) +{ + return drwav_open_write__internal(pFormat, totalSampleCount, DRWAV_TRUE, onWrite, NULL, pUserData); +} + +void drwav_close(drwav* pWav) +{ + drwav_uninit(pWav); + DRWAV_FREE(pWav); +} + + +size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut) +{ + if (pWav == NULL || bytesToRead == 0 || pBufferOut == NULL) { + return 0; + } + + if (bytesToRead > pWav->bytesRemaining) { + bytesToRead = (size_t)pWav->bytesRemaining; + } + + size_t bytesRead = pWav->onRead(pWav->pUserData, pBufferOut, bytesToRead); + + pWav->bytesRemaining -= bytesRead; + return bytesRead; +} + +drwav_uint64 drwav_read(drwav* pWav, drwav_uint64 samplesToRead, void* pBufferOut) +{ + if (pWav == NULL || samplesToRead == 0 || pBufferOut == NULL) { + return 0; + } + + // Cannot use this function for compressed formats. + if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { + return 0; + } + + // Don't try to read more samples than can potentially fit in the output buffer. + if (samplesToRead * pWav->bytesPerSample > DRWAV_SIZE_MAX) { + samplesToRead = DRWAV_SIZE_MAX / pWav->bytesPerSample; + } + + size_t bytesRead = drwav_read_raw(pWav, (size_t)(samplesToRead * pWav->bytesPerSample), pBufferOut); + return bytesRead / pWav->bytesPerSample; +} + +drwav_bool32 drwav_seek_to_first_sample(drwav* pWav) +{ + if (pWav->onWrite != NULL) { + return DRWAV_FALSE; // No seeking in write mode. + } + + if (!pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos, drwav_seek_origin_start)) { + return DRWAV_FALSE; + } + + if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { + pWav->compressed.iCurrentSample = 0; + } + + pWav->bytesRemaining = pWav->dataChunkDataSize; + return DRWAV_TRUE; +} + +drwav_bool32 drwav_seek_to_sample(drwav* pWav, drwav_uint64 sample) +{ + // Seeking should be compatible with wave files > 2GB. + + if (pWav->onWrite != NULL) { + return DRWAV_FALSE; // No seeking in write mode. + } + + if (pWav == NULL || pWav->onSeek == NULL) { + return DRWAV_FALSE; + } + + // If there are no samples, just return DRWAV_TRUE without doing anything. + if (pWav->totalSampleCount == 0) { + return DRWAV_TRUE; + } + + // Make sure the sample is clamped. + if (sample >= pWav->totalSampleCount) { + sample = pWav->totalSampleCount - 1; + } + + + // For compressed formats we just use a slow generic seek. If we are seeking forward we just seek forward. If we are going backwards we need + // to seek back to the start. + if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { + // TODO: This can be optimized. + + // If we're seeking forward it's simple - just keep reading samples until we hit the sample we're requesting. If we're seeking backwards, + // we first need to seek back to the start and then just do the same thing as a forward seek. + if (sample < pWav->compressed.iCurrentSample) { + if (!drwav_seek_to_first_sample(pWav)) { + return DRWAV_FALSE; + } + } + + if (sample > pWav->compressed.iCurrentSample) { + drwav_uint64 offset = sample - pWav->compressed.iCurrentSample; + + drwav_int16 devnull[2048]; + while (offset > 0) { + drwav_uint64 samplesToRead = offset; + if (samplesToRead > 2048) { + samplesToRead = 2048; + } + + drwav_uint64 samplesRead = 0; + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + samplesRead = drwav_read_s16__msadpcm(pWav, samplesToRead, devnull); + } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + samplesRead = drwav_read_s16__ima(pWav, samplesToRead, devnull); + } else { + assert(DRWAV_FALSE); // If this assertion is triggered it means I've implemented a new compressed format but forgot to add a branch for it here. + } + + if (samplesRead != samplesToRead) { + return DRWAV_FALSE; + } + + offset -= samplesRead; + } + } + } else { + drwav_uint64 totalSizeInBytes = pWav->totalSampleCount * pWav->bytesPerSample; + drwav_assert(totalSizeInBytes >= pWav->bytesRemaining); + + drwav_uint64 currentBytePos = totalSizeInBytes - pWav->bytesRemaining; + drwav_uint64 targetBytePos = sample * pWav->bytesPerSample; + + drwav_uint64 offset; + if (currentBytePos < targetBytePos) { + // Offset forwards. + offset = (targetBytePos - currentBytePos); + } else { + // Offset backwards. + if (!drwav_seek_to_first_sample(pWav)) { + return DRWAV_FALSE; + } + offset = targetBytePos; + } + + while (offset > 0) { + int offset32 = ((offset > INT_MAX) ? INT_MAX : (int)offset); + if (!pWav->onSeek(pWav->pUserData, offset32, drwav_seek_origin_current)) { + return DRWAV_FALSE; + } + + pWav->bytesRemaining -= offset32; + offset -= offset32; + } + } + + return DRWAV_TRUE; +} + + +size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData) +{ + if (pWav == NULL || bytesToWrite == 0 || pData == NULL) { + return 0; + } + + size_t bytesWritten = pWav->onWrite(pWav->pUserData, pData, bytesToWrite); + pWav->dataChunkDataSize += bytesWritten; + + return bytesWritten; +} + +drwav_uint64 drwav_write(drwav* pWav, drwav_uint64 samplesToWrite, const void* pData) +{ + if (pWav == NULL || samplesToWrite == 0 || pData == NULL) { + return 0; + } + + drwav_uint64 bytesToWrite = ((samplesToWrite * pWav->bitsPerSample) / 8); + if (bytesToWrite > DRWAV_SIZE_MAX) { + return 0; + } + + drwav_uint64 bytesWritten = 0; + const drwav_uint8* pRunningData = (const drwav_uint8*)pData; + while (bytesToWrite > 0) { + drwav_uint64 bytesToWriteThisIteration = bytesToWrite; + if (bytesToWriteThisIteration > DRWAV_SIZE_MAX) { + bytesToWriteThisIteration = DRWAV_SIZE_MAX; + } + + size_t bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, pRunningData); + if (bytesJustWritten == 0) { + break; + } + + bytesToWrite -= bytesJustWritten; + bytesWritten += bytesJustWritten; + pRunningData += bytesJustWritten; + } + + return (bytesWritten * 8) / pWav->bitsPerSample; +} + + + +drwav_uint64 drwav_read_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut) +{ + drwav_assert(pWav != NULL); + drwav_assert(samplesToRead > 0); + drwav_assert(pBufferOut != NULL); + + // TODO: Lots of room for optimization here. + + drwav_uint64 totalSamplesRead = 0; + + while (samplesToRead > 0 && pWav->compressed.iCurrentSample < pWav->totalSampleCount) { + // If there are no cached samples we need to load a new block. + if (pWav->msadpcm.cachedSampleCount == 0 && pWav->msadpcm.bytesRemainingInBlock == 0) { + if (pWav->channels == 1) { + // Mono. + drwav_uint8 header[7]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalSamplesRead; + } + pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + + pWav->msadpcm.predictor[0] = header[0]; + pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 1); + pWav->msadpcm.prevSamples[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 3); + pWav->msadpcm.prevSamples[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 5); + pWav->msadpcm.cachedSamples[2] = pWav->msadpcm.prevSamples[0][0]; + pWav->msadpcm.cachedSamples[3] = pWav->msadpcm.prevSamples[0][1]; + pWav->msadpcm.cachedSampleCount = 2; + } else { + // Stereo. + drwav_uint8 header[14]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalSamplesRead; + } + pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + + pWav->msadpcm.predictor[0] = header[0]; + pWav->msadpcm.predictor[1] = header[1]; + pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 2); + pWav->msadpcm.delta[1] = drwav__bytes_to_s16(header + 4); + pWav->msadpcm.prevSamples[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 6); + pWav->msadpcm.prevSamples[1][1] = (drwav_int32)drwav__bytes_to_s16(header + 8); + pWav->msadpcm.prevSamples[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 10); + pWav->msadpcm.prevSamples[1][0] = (drwav_int32)drwav__bytes_to_s16(header + 12); + + pWav->msadpcm.cachedSamples[0] = pWav->msadpcm.prevSamples[0][0]; + pWav->msadpcm.cachedSamples[1] = pWav->msadpcm.prevSamples[1][0]; + pWav->msadpcm.cachedSamples[2] = pWav->msadpcm.prevSamples[0][1]; + pWav->msadpcm.cachedSamples[3] = pWav->msadpcm.prevSamples[1][1]; + pWav->msadpcm.cachedSampleCount = 4; + } + } + + // Output anything that's cached. + while (samplesToRead > 0 && pWav->msadpcm.cachedSampleCount > 0 && pWav->compressed.iCurrentSample < pWav->totalSampleCount) { + pBufferOut[0] = (drwav_int16)pWav->msadpcm.cachedSamples[drwav_countof(pWav->msadpcm.cachedSamples) - pWav->msadpcm.cachedSampleCount]; + pWav->msadpcm.cachedSampleCount -= 1; + + pBufferOut += 1; + samplesToRead -= 1; + totalSamplesRead += 1; + pWav->compressed.iCurrentSample += 1; + } + + if (samplesToRead == 0) { + return totalSamplesRead; + } + + + // If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next + // loop iteration which will trigger the loading of a new block. + if (pWav->msadpcm.cachedSampleCount == 0) { + if (pWav->msadpcm.bytesRemainingInBlock == 0) { + continue; + } else { + drwav_uint8 nibbles; + if (pWav->onRead(pWav->pUserData, &nibbles, 1) != 1) { + return totalSamplesRead; + } + pWav->msadpcm.bytesRemainingInBlock -= 1; + + // TODO: Optimize away these if statements. + drwav_int32 nibble0 = ((nibbles & 0xF0) >> 4); if ((nibbles & 0x80)) { nibble0 |= 0xFFFFFFF0UL; } + drwav_int32 nibble1 = ((nibbles & 0x0F) >> 0); if ((nibbles & 0x08)) { nibble1 |= 0xFFFFFFF0UL; } + + static drwav_int32 adaptationTable[] = { + 230, 230, 230, 230, 307, 409, 512, 614, + 768, 614, 512, 409, 307, 230, 230, 230 + }; + static drwav_int32 coeff1Table[] = { 256, 512, 0, 192, 240, 460, 392 }; + static drwav_int32 coeff2Table[] = { 0, -256, 0, 64, 0, -208, -232 }; + + if (pWav->channels == 1) { + // Mono. + drwav_int32 newSample0; + newSample0 = ((pWav->msadpcm.prevSamples[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevSamples[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; + newSample0 += nibble0 * pWav->msadpcm.delta[0]; + newSample0 = drwav_clamp(newSample0, -32768, 32767); + + pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8; + if (pWav->msadpcm.delta[0] < 16) { + pWav->msadpcm.delta[0] = 16; + } + + pWav->msadpcm.prevSamples[0][0] = pWav->msadpcm.prevSamples[0][1]; + pWav->msadpcm.prevSamples[0][1] = newSample0; + + + drwav_int32 newSample1; + newSample1 = ((pWav->msadpcm.prevSamples[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevSamples[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; + newSample1 += nibble1 * pWav->msadpcm.delta[0]; + newSample1 = drwav_clamp(newSample1, -32768, 32767); + + pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[0]) >> 8; + if (pWav->msadpcm.delta[0] < 16) { + pWav->msadpcm.delta[0] = 16; + } + + pWav->msadpcm.prevSamples[0][0] = pWav->msadpcm.prevSamples[0][1]; + pWav->msadpcm.prevSamples[0][1] = newSample1; + + + pWav->msadpcm.cachedSamples[2] = newSample0; + pWav->msadpcm.cachedSamples[3] = newSample1; + pWav->msadpcm.cachedSampleCount = 2; + } else { + // Stereo. + + // Left. + drwav_int32 newSample0; + newSample0 = ((pWav->msadpcm.prevSamples[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevSamples[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; + newSample0 += nibble0 * pWav->msadpcm.delta[0]; + newSample0 = drwav_clamp(newSample0, -32768, 32767); + + pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8; + if (pWav->msadpcm.delta[0] < 16) { + pWav->msadpcm.delta[0] = 16; + } + + pWav->msadpcm.prevSamples[0][0] = pWav->msadpcm.prevSamples[0][1]; + pWav->msadpcm.prevSamples[0][1] = newSample0; + + + // Right. + drwav_int32 newSample1; + newSample1 = ((pWav->msadpcm.prevSamples[1][1] * coeff1Table[pWav->msadpcm.predictor[1]]) + (pWav->msadpcm.prevSamples[1][0] * coeff2Table[pWav->msadpcm.predictor[1]])) >> 8; + newSample1 += nibble1 * pWav->msadpcm.delta[1]; + newSample1 = drwav_clamp(newSample1, -32768, 32767); + + pWav->msadpcm.delta[1] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[1]) >> 8; + if (pWav->msadpcm.delta[1] < 16) { + pWav->msadpcm.delta[1] = 16; + } + + pWav->msadpcm.prevSamples[1][0] = pWav->msadpcm.prevSamples[1][1]; + pWav->msadpcm.prevSamples[1][1] = newSample1; + + pWav->msadpcm.cachedSamples[2] = newSample0; + pWav->msadpcm.cachedSamples[3] = newSample1; + pWav->msadpcm.cachedSampleCount = 2; + } + } + } + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut) +{ + drwav_assert(pWav != NULL); + drwav_assert(samplesToRead > 0); + drwav_assert(pBufferOut != NULL); + + // TODO: Lots of room for optimization here. + + drwav_uint64 totalSamplesRead = 0; + + while (samplesToRead > 0 && pWav->compressed.iCurrentSample < pWav->totalSampleCount) { + // If there are no cached samples we need to load a new block. + if (pWav->ima.cachedSampleCount == 0 && pWav->ima.bytesRemainingInBlock == 0) { + if (pWav->channels == 1) { + // Mono. + drwav_uint8 header[4]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalSamplesRead; + } + pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + + pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0); + pWav->ima.stepIndex[0] = header[2]; + pWav->ima.cachedSamples[drwav_countof(pWav->ima.cachedSamples) - 1] = pWav->ima.predictor[0]; + pWav->ima.cachedSampleCount = 1; + } else { + // Stereo. + drwav_uint8 header[8]; + if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { + return totalSamplesRead; + } + pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); + + pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0); + pWav->ima.stepIndex[0] = header[2]; + pWav->ima.predictor[1] = drwav__bytes_to_s16(header + 4); + pWav->ima.stepIndex[1] = header[6]; + + pWav->ima.cachedSamples[drwav_countof(pWav->ima.cachedSamples) - 2] = pWav->ima.predictor[0]; + pWav->ima.cachedSamples[drwav_countof(pWav->ima.cachedSamples) - 1] = pWav->ima.predictor[1]; + pWav->ima.cachedSampleCount = 2; + } + } + + // Output anything that's cached. + while (samplesToRead > 0 && pWav->ima.cachedSampleCount > 0 && pWav->compressed.iCurrentSample < pWav->totalSampleCount) { + pBufferOut[0] = (drwav_int16)pWav->ima.cachedSamples[drwav_countof(pWav->ima.cachedSamples) - pWav->ima.cachedSampleCount]; + pWav->ima.cachedSampleCount -= 1; + + pBufferOut += 1; + samplesToRead -= 1; + totalSamplesRead += 1; + pWav->compressed.iCurrentSample += 1; + } + + if (samplesToRead == 0) { + return totalSamplesRead; + } + + // If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next + // loop iteration which will trigger the loading of a new block. + if (pWav->ima.cachedSampleCount == 0) { + if (pWav->ima.bytesRemainingInBlock == 0) { + continue; + } else { + static drwav_int32 indexTable[16] = { + -1, -1, -1, -1, 2, 4, 6, 8, + -1, -1, -1, -1, 2, 4, 6, 8 + }; + + static drwav_int32 stepTable[89] = { + 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, + 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, + 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, + 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, + 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, + 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, + 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, + 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, + 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 + }; + + // From what I can tell with stereo streams, it looks like every 4 bytes (8 samples) is for one channel. So it goes 4 bytes for the + // left channel, 4 bytes for the right channel. + pWav->ima.cachedSampleCount = 8 * pWav->channels; + for (drwav_uint32 iChannel = 0; iChannel < pWav->channels; ++iChannel) { + drwav_uint8 nibbles[4]; + if (pWav->onRead(pWav->pUserData, &nibbles, 4) != 4) { + return totalSamplesRead; + } + pWav->ima.bytesRemainingInBlock -= 4; + + for (drwav_uint32 iByte = 0; iByte < 4; ++iByte) { + drwav_uint8 nibble0 = ((nibbles[iByte] & 0x0F) >> 0); + drwav_uint8 nibble1 = ((nibbles[iByte] & 0xF0) >> 4); + + drwav_int32 step = stepTable[pWav->ima.stepIndex[iChannel]]; + drwav_int32 predictor = pWav->ima.predictor[iChannel]; + + drwav_int32 diff = step >> 3; + if (nibble0 & 1) diff += step >> 2; + if (nibble0 & 2) diff += step >> 1; + if (nibble0 & 4) diff += step; + if (nibble0 & 8) diff = -diff; + + predictor = drwav_clamp(predictor + diff, -32768, 32767); + pWav->ima.predictor[iChannel] = predictor; + pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble0], 0, (drwav_int32)drwav_countof(stepTable)-1); + pWav->ima.cachedSamples[(drwav_countof(pWav->ima.cachedSamples) - pWav->ima.cachedSampleCount) + (iByte*2+0)*pWav->channels + iChannel] = predictor; + + + step = stepTable[pWav->ima.stepIndex[iChannel]]; + predictor = pWav->ima.predictor[iChannel]; + + diff = step >> 3; + if (nibble1 & 1) diff += step >> 2; + if (nibble1 & 2) diff += step >> 1; + if (nibble1 & 4) diff += step; + if (nibble1 & 8) diff = -diff; + + predictor = drwav_clamp(predictor + diff, -32768, 32767); + pWav->ima.predictor[iChannel] = predictor; + pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble1], 0, (drwav_int32)drwav_countof(stepTable)-1); + pWav->ima.cachedSamples[(drwav_countof(pWav->ima.cachedSamples) - pWav->ima.cachedSampleCount) + (iByte*2+1)*pWav->channels + iChannel] = predictor; + } + } + } + } + } + + return totalSamplesRead; +} + + +#ifndef DR_WAV_NO_CONVERSION_API +static unsigned short g_drwavAlawTable[256] = { + 0xEA80, 0xEB80, 0xE880, 0xE980, 0xEE80, 0xEF80, 0xEC80, 0xED80, 0xE280, 0xE380, 0xE080, 0xE180, 0xE680, 0xE780, 0xE480, 0xE580, + 0xF540, 0xF5C0, 0xF440, 0xF4C0, 0xF740, 0xF7C0, 0xF640, 0xF6C0, 0xF140, 0xF1C0, 0xF040, 0xF0C0, 0xF340, 0xF3C0, 0xF240, 0xF2C0, + 0xAA00, 0xAE00, 0xA200, 0xA600, 0xBA00, 0xBE00, 0xB200, 0xB600, 0x8A00, 0x8E00, 0x8200, 0x8600, 0x9A00, 0x9E00, 0x9200, 0x9600, + 0xD500, 0xD700, 0xD100, 0xD300, 0xDD00, 0xDF00, 0xD900, 0xDB00, 0xC500, 0xC700, 0xC100, 0xC300, 0xCD00, 0xCF00, 0xC900, 0xCB00, + 0xFEA8, 0xFEB8, 0xFE88, 0xFE98, 0xFEE8, 0xFEF8, 0xFEC8, 0xFED8, 0xFE28, 0xFE38, 0xFE08, 0xFE18, 0xFE68, 0xFE78, 0xFE48, 0xFE58, + 0xFFA8, 0xFFB8, 0xFF88, 0xFF98, 0xFFE8, 0xFFF8, 0xFFC8, 0xFFD8, 0xFF28, 0xFF38, 0xFF08, 0xFF18, 0xFF68, 0xFF78, 0xFF48, 0xFF58, + 0xFAA0, 0xFAE0, 0xFA20, 0xFA60, 0xFBA0, 0xFBE0, 0xFB20, 0xFB60, 0xF8A0, 0xF8E0, 0xF820, 0xF860, 0xF9A0, 0xF9E0, 0xF920, 0xF960, + 0xFD50, 0xFD70, 0xFD10, 0xFD30, 0xFDD0, 0xFDF0, 0xFD90, 0xFDB0, 0xFC50, 0xFC70, 0xFC10, 0xFC30, 0xFCD0, 0xFCF0, 0xFC90, 0xFCB0, + 0x1580, 0x1480, 0x1780, 0x1680, 0x1180, 0x1080, 0x1380, 0x1280, 0x1D80, 0x1C80, 0x1F80, 0x1E80, 0x1980, 0x1880, 0x1B80, 0x1A80, + 0x0AC0, 0x0A40, 0x0BC0, 0x0B40, 0x08C0, 0x0840, 0x09C0, 0x0940, 0x0EC0, 0x0E40, 0x0FC0, 0x0F40, 0x0CC0, 0x0C40, 0x0DC0, 0x0D40, + 0x5600, 0x5200, 0x5E00, 0x5A00, 0x4600, 0x4200, 0x4E00, 0x4A00, 0x7600, 0x7200, 0x7E00, 0x7A00, 0x6600, 0x6200, 0x6E00, 0x6A00, + 0x2B00, 0x2900, 0x2F00, 0x2D00, 0x2300, 0x2100, 0x2700, 0x2500, 0x3B00, 0x3900, 0x3F00, 0x3D00, 0x3300, 0x3100, 0x3700, 0x3500, + 0x0158, 0x0148, 0x0178, 0x0168, 0x0118, 0x0108, 0x0138, 0x0128, 0x01D8, 0x01C8, 0x01F8, 0x01E8, 0x0198, 0x0188, 0x01B8, 0x01A8, + 0x0058, 0x0048, 0x0078, 0x0068, 0x0018, 0x0008, 0x0038, 0x0028, 0x00D8, 0x00C8, 0x00F8, 0x00E8, 0x0098, 0x0088, 0x00B8, 0x00A8, + 0x0560, 0x0520, 0x05E0, 0x05A0, 0x0460, 0x0420, 0x04E0, 0x04A0, 0x0760, 0x0720, 0x07E0, 0x07A0, 0x0660, 0x0620, 0x06E0, 0x06A0, + 0x02B0, 0x0290, 0x02F0, 0x02D0, 0x0230, 0x0210, 0x0270, 0x0250, 0x03B0, 0x0390, 0x03F0, 0x03D0, 0x0330, 0x0310, 0x0370, 0x0350 +}; + +static unsigned short g_drwavMulawTable[256] = { + 0x8284, 0x8684, 0x8A84, 0x8E84, 0x9284, 0x9684, 0x9A84, 0x9E84, 0xA284, 0xA684, 0xAA84, 0xAE84, 0xB284, 0xB684, 0xBA84, 0xBE84, + 0xC184, 0xC384, 0xC584, 0xC784, 0xC984, 0xCB84, 0xCD84, 0xCF84, 0xD184, 0xD384, 0xD584, 0xD784, 0xD984, 0xDB84, 0xDD84, 0xDF84, + 0xE104, 0xE204, 0xE304, 0xE404, 0xE504, 0xE604, 0xE704, 0xE804, 0xE904, 0xEA04, 0xEB04, 0xEC04, 0xED04, 0xEE04, 0xEF04, 0xF004, + 0xF0C4, 0xF144, 0xF1C4, 0xF244, 0xF2C4, 0xF344, 0xF3C4, 0xF444, 0xF4C4, 0xF544, 0xF5C4, 0xF644, 0xF6C4, 0xF744, 0xF7C4, 0xF844, + 0xF8A4, 0xF8E4, 0xF924, 0xF964, 0xF9A4, 0xF9E4, 0xFA24, 0xFA64, 0xFAA4, 0xFAE4, 0xFB24, 0xFB64, 0xFBA4, 0xFBE4, 0xFC24, 0xFC64, + 0xFC94, 0xFCB4, 0xFCD4, 0xFCF4, 0xFD14, 0xFD34, 0xFD54, 0xFD74, 0xFD94, 0xFDB4, 0xFDD4, 0xFDF4, 0xFE14, 0xFE34, 0xFE54, 0xFE74, + 0xFE8C, 0xFE9C, 0xFEAC, 0xFEBC, 0xFECC, 0xFEDC, 0xFEEC, 0xFEFC, 0xFF0C, 0xFF1C, 0xFF2C, 0xFF3C, 0xFF4C, 0xFF5C, 0xFF6C, 0xFF7C, + 0xFF88, 0xFF90, 0xFF98, 0xFFA0, 0xFFA8, 0xFFB0, 0xFFB8, 0xFFC0, 0xFFC8, 0xFFD0, 0xFFD8, 0xFFE0, 0xFFE8, 0xFFF0, 0xFFF8, 0x0000, + 0x7D7C, 0x797C, 0x757C, 0x717C, 0x6D7C, 0x697C, 0x657C, 0x617C, 0x5D7C, 0x597C, 0x557C, 0x517C, 0x4D7C, 0x497C, 0x457C, 0x417C, + 0x3E7C, 0x3C7C, 0x3A7C, 0x387C, 0x367C, 0x347C, 0x327C, 0x307C, 0x2E7C, 0x2C7C, 0x2A7C, 0x287C, 0x267C, 0x247C, 0x227C, 0x207C, + 0x1EFC, 0x1DFC, 0x1CFC, 0x1BFC, 0x1AFC, 0x19FC, 0x18FC, 0x17FC, 0x16FC, 0x15FC, 0x14FC, 0x13FC, 0x12FC, 0x11FC, 0x10FC, 0x0FFC, + 0x0F3C, 0x0EBC, 0x0E3C, 0x0DBC, 0x0D3C, 0x0CBC, 0x0C3C, 0x0BBC, 0x0B3C, 0x0ABC, 0x0A3C, 0x09BC, 0x093C, 0x08BC, 0x083C, 0x07BC, + 0x075C, 0x071C, 0x06DC, 0x069C, 0x065C, 0x061C, 0x05DC, 0x059C, 0x055C, 0x051C, 0x04DC, 0x049C, 0x045C, 0x041C, 0x03DC, 0x039C, + 0x036C, 0x034C, 0x032C, 0x030C, 0x02EC, 0x02CC, 0x02AC, 0x028C, 0x026C, 0x024C, 0x022C, 0x020C, 0x01EC, 0x01CC, 0x01AC, 0x018C, + 0x0174, 0x0164, 0x0154, 0x0144, 0x0134, 0x0124, 0x0114, 0x0104, 0x00F4, 0x00E4, 0x00D4, 0x00C4, 0x00B4, 0x00A4, 0x0094, 0x0084, + 0x0078, 0x0070, 0x0068, 0x0060, 0x0058, 0x0050, 0x0048, 0x0040, 0x0038, 0x0030, 0x0028, 0x0020, 0x0018, 0x0010, 0x0008, 0x0000 +}; + +static DRWAV_INLINE drwav_int16 drwav__alaw_to_s16(drwav_uint8 sampleIn) +{ + return (short)g_drwavAlawTable[sampleIn]; +} + +static DRWAV_INLINE drwav_int16 drwav__mulaw_to_s16(drwav_uint8 sampleIn) +{ + return (short)g_drwavMulawTable[sampleIn]; +} + + + +static void drwav__pcm_to_s16(drwav_int16* pOut, const unsigned char* pIn, size_t totalSampleCount, unsigned short bytesPerSample) +{ + // Special case for 8-bit sample data because it's treated as unsigned. + if (bytesPerSample == 1) { + drwav_u8_to_s16(pOut, pIn, totalSampleCount); + return; + } + + + // Slightly more optimal implementation for common formats. + if (bytesPerSample == 2) { + for (unsigned int i = 0; i < totalSampleCount; ++i) { + *pOut++ = ((const drwav_int16*)pIn)[i]; + } + return; + } + if (bytesPerSample == 3) { + drwav_s24_to_s16(pOut, pIn, totalSampleCount); + return; + } + if (bytesPerSample == 4) { + drwav_s32_to_s16(pOut, (const drwav_int32*)pIn, totalSampleCount); + return; + } + + + // Anything more than 64 bits per sample is not supported. + if (bytesPerSample > 8) { + drwav_zero_memory(pOut, totalSampleCount * sizeof(*pOut)); + return; + } + + + // Generic, slow converter. + for (unsigned int i = 0; i < totalSampleCount; ++i) { + drwav_uint64 sample = 0; + unsigned int shift = (8 - bytesPerSample) * 8; + + unsigned int j; + for (j = 0; j < bytesPerSample && j < 8; j += 1) { + sample |= (drwav_uint64)(pIn[j]) << shift; + shift += 8; + } + + pIn += j; + *pOut++ = (drwav_int16)((drwav_int64)sample >> 48); + } +} + +static void drwav__ieee_to_s16(drwav_int16* pOut, const unsigned char* pIn, size_t totalSampleCount, unsigned short bytesPerSample) +{ + if (bytesPerSample == 4) { + drwav_f32_to_s16(pOut, (const float*)pIn, totalSampleCount); + return; + } else if (bytesPerSample == 8) { + drwav_f64_to_s16(pOut, (const double*)pIn, totalSampleCount); + return; + } else { + // Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. + drwav_zero_memory(pOut, totalSampleCount * sizeof(*pOut)); + return; + } +} + +drwav_uint64 drwav_read_s16__pcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut) +{ + // Fast path. + if (pWav->bytesPerSample == 2) { + return drwav_read(pWav, samplesToRead, pBufferOut); + } + + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav__pcm_to_s16(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s16__ieee(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav__ieee_to_s16(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s16__alaw(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav_alaw_to_s16(pBufferOut, sampleData, (size_t)samplesRead); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s16__mulaw(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut) +{ + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav_mulaw_to_s16(pBufferOut, sampleData, (size_t)samplesRead); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s16(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut) +{ + if (pWav == NULL || samplesToRead == 0 || pBufferOut == NULL) { + return 0; + } + + // Don't try to read more samples than can potentially fit in the output buffer. + if (samplesToRead * sizeof(drwav_int16) > DRWAV_SIZE_MAX) { + samplesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int16); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { + return drwav_read_s16__pcm(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + return drwav_read_s16__msadpcm(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { + return drwav_read_s16__ieee(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { + return drwav_read_s16__alaw(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { + return drwav_read_s16__mulaw(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + return drwav_read_s16__ima(pWav, samplesToRead, pBufferOut); + } + + return 0; +} + +void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + int r; + for (size_t i = 0; i < sampleCount; ++i) { + int x = pIn[i]; + r = x - 128; + r = r << 8; + pOut[i] = (short)r; + } +} + +void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + int r; + for (size_t i = 0; i < sampleCount; ++i) { + int x = ((int)(((unsigned int)(((const unsigned char*)pIn)[i*3+0]) << 8) | ((unsigned int)(((const unsigned char*)pIn)[i*3+1]) << 16) | ((unsigned int)(((const unsigned char*)pIn)[i*3+2])) << 24)) >> 8; + r = x >> 8; + pOut[i] = (short)r; + } +} + +void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount) +{ + int r; + for (size_t i = 0; i < sampleCount; ++i) { + int x = pIn[i]; + r = x >> 16; + pOut[i] = (short)r; + } +} + +void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount) +{ + int r; + for (size_t i = 0; i < sampleCount; ++i) { + float x = pIn[i]; + float c; + c = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); + c = c + 1; + r = (int)(c * 32767.5f); + r = r - 32768; + pOut[i] = (short)r; + } +} + +void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount) +{ + int r; + for (size_t i = 0; i < sampleCount; ++i) { + double x = pIn[i]; + double c; + c = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); + c = c + 1; + r = (int)(c * 32767.5); + r = r - 32768; + pOut[i] = (short)r; + } +} + +void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + for (size_t i = 0; i < sampleCount; ++i) { + pOut[i] = drwav__alaw_to_s16(pIn[i]); + } +} + +void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + for (size_t i = 0; i < sampleCount; ++i) { + pOut[i] = drwav__mulaw_to_s16(pIn[i]); + } +} + + + +static void drwav__pcm_to_f32(float* pOut, const unsigned char* pIn, size_t sampleCount, unsigned short bytesPerSample) +{ + // Special case for 8-bit sample data because it's treated as unsigned. + if (bytesPerSample == 1) { + drwav_u8_to_f32(pOut, pIn, sampleCount); + return; + } + + // Slightly more optimal implementation for common formats. + if (bytesPerSample == 2) { + drwav_s16_to_f32(pOut, (const drwav_int16*)pIn, sampleCount); + return; + } + if (bytesPerSample == 3) { + drwav_s24_to_f32(pOut, pIn, sampleCount); + return; + } + if (bytesPerSample == 4) { + drwav_s32_to_f32(pOut, (const drwav_int32*)pIn, sampleCount); + return; + } + + + // Anything more than 64 bits per sample is not supported. + if (bytesPerSample > 8) { + drwav_zero_memory(pOut, sampleCount * sizeof(*pOut)); + return; + } + + + // Generic, slow converter. + for (unsigned int i = 0; i < sampleCount; ++i) { + drwav_uint64 sample = 0; + unsigned int shift = (8 - bytesPerSample) * 8; + + unsigned int j; + for (j = 0; j < bytesPerSample && j < 8; j += 1) { + sample |= (drwav_uint64)(pIn[j]) << shift; + shift += 8; + } + + pIn += j; + *pOut++ = (float)((drwav_int64)sample / 9223372036854775807.0); + } +} + +static void drwav__ieee_to_f32(float* pOut, const unsigned char* pIn, size_t sampleCount, unsigned short bytesPerSample) +{ + if (bytesPerSample == 4) { + for (unsigned int i = 0; i < sampleCount; ++i) { + *pOut++ = ((const float*)pIn)[i]; + } + return; + } else if (bytesPerSample == 8) { + drwav_f64_to_f32(pOut, (const double*)pIn, sampleCount); + return; + } else { + // Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. + drwav_zero_memory(pOut, sampleCount * sizeof(*pOut)); + return; + } +} + + +drwav_uint64 drwav_read_f32__pcm(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut) +{ + if (pWav->bytesPerSample == 0) { + return 0; + } + + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav__pcm_to_f32(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample); + pBufferOut += samplesRead; + + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_f32__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut) +{ + // We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't + // want to duplicate that code. + drwav_uint64 totalSamplesRead = 0; + drwav_int16 samples16[2048]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read_s16(pWav, drwav_min(samplesToRead, 2048), samples16); + if (samplesRead == 0) { + break; + } + + drwav_s16_to_f32(pBufferOut, samples16, (size_t)samplesRead); // <-- Safe cast because we're clamping to 2048. + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_f32__ima(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut) +{ + // We're just going to borrow the implementation from the drwav_read_s16() since IMA-ADPCM is a little bit more complicated than other formats and I don't + // want to duplicate that code. + drwav_uint64 totalSamplesRead = 0; + drwav_int16 samples16[2048]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read_s16(pWav, drwav_min(samplesToRead, 2048), samples16); + if (samplesRead == 0) { + break; + } + + drwav_s16_to_f32(pBufferOut, samples16, (size_t)samplesRead); // <-- Safe cast because we're clamping to 2048. + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_f32__ieee(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut) +{ + // Fast path. + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT && pWav->bytesPerSample == 4) { + return drwav_read(pWav, samplesToRead, pBufferOut); + } + + if (pWav->bytesPerSample == 0) { + return 0; + } + + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav__ieee_to_f32(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_f32__alaw(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut) +{ + if (pWav->bytesPerSample == 0) { + return 0; + } + + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav_alaw_to_f32(pBufferOut, sampleData, (size_t)samplesRead); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_f32__mulaw(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut) +{ + if (pWav->bytesPerSample == 0) { + return 0; + } + + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav_mulaw_to_f32(pBufferOut, sampleData, (size_t)samplesRead); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_f32(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut) +{ + if (pWav == NULL || samplesToRead == 0 || pBufferOut == NULL) { + return 0; + } + + // Don't try to read more samples than can potentially fit in the output buffer. + if (samplesToRead * sizeof(float) > DRWAV_SIZE_MAX) { + samplesToRead = DRWAV_SIZE_MAX / sizeof(float); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { + return drwav_read_f32__pcm(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + return drwav_read_f32__msadpcm(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { + return drwav_read_f32__ieee(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { + return drwav_read_f32__alaw(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { + return drwav_read_f32__mulaw(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + return drwav_read_f32__ima(pWav, samplesToRead, pBufferOut); + } + + return 0; +} + +void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + +#ifdef DR_WAV_LIBSNDFILE_COMPAT + // It appears libsndfile uses slightly different logic for the u8 -> f32 conversion to dr_wav, which in my opinion is incorrect. It appears + // libsndfile performs the conversion something like "f32 = (u8 / 256) * 2 - 1", however I think it should be "f32 = (u8 / 255) * 2 - 1" (note + // the divisor of 256 vs 255). I use libsndfile as a benchmark for testing, so I'm therefore leaving this block here just for my automated + // correctness testing. This is disabled by default. + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = (pIn[i] / 256.0f) * 2 - 1; + } +#else + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = (pIn[i] / 255.0f) * 2 - 1; + } +#endif +} + +void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = pIn[i] / 32768.0f; + } +} + +void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + unsigned int s0 = pIn[i*3 + 0]; + unsigned int s1 = pIn[i*3 + 1]; + unsigned int s2 = pIn[i*3 + 2]; + + int sample32 = (int)((s0 << 8) | (s1 << 16) | (s2 << 24)); + *pOut++ = (float)(sample32 / 2147483648.0); + } +} + +void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = (float)(pIn[i] / 2147483648.0); + } +} + +void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = (float)pIn[i]; + } +} + +void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = drwav__alaw_to_s16(pIn[i]) / 32768.0f; + } +} + +void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = drwav__mulaw_to_s16(pIn[i]) / 32768.0f; + } +} + + + +static void drwav__pcm_to_s32(drwav_int32* pOut, const unsigned char* pIn, size_t totalSampleCount, unsigned short bytesPerSample) +{ + // Special case for 8-bit sample data because it's treated as unsigned. + if (bytesPerSample == 1) { + drwav_u8_to_s32(pOut, pIn, totalSampleCount); + return; + } + + // Slightly more optimal implementation for common formats. + if (bytesPerSample == 2) { + drwav_s16_to_s32(pOut, (const drwav_int16*)pIn, totalSampleCount); + return; + } + if (bytesPerSample == 3) { + drwav_s24_to_s32(pOut, pIn, totalSampleCount); + return; + } + if (bytesPerSample == 4) { + for (unsigned int i = 0; i < totalSampleCount; ++i) { + *pOut++ = ((const drwav_int32*)pIn)[i]; + } + return; + } + + + // Anything more than 64 bits per sample is not supported. + if (bytesPerSample > 8) { + drwav_zero_memory(pOut, totalSampleCount * sizeof(*pOut)); + return; + } + + + // Generic, slow converter. + for (unsigned int i = 0; i < totalSampleCount; ++i) { + drwav_uint64 sample = 0; + unsigned int shift = (8 - bytesPerSample) * 8; + + unsigned int j; + for (j = 0; j < bytesPerSample && j < 8; j += 1) { + sample |= (drwav_uint64)(pIn[j]) << shift; + shift += 8; + } + + pIn += j; + *pOut++ = (drwav_int32)((drwav_int64)sample >> 32); + } +} + +static void drwav__ieee_to_s32(drwav_int32* pOut, const unsigned char* pIn, size_t totalSampleCount, unsigned short bytesPerSample) +{ + if (bytesPerSample == 4) { + drwav_f32_to_s32(pOut, (const float*)pIn, totalSampleCount); + return; + } else if (bytesPerSample == 8) { + drwav_f64_to_s32(pOut, (const double*)pIn, totalSampleCount); + return; + } else { + // Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. + drwav_zero_memory(pOut, totalSampleCount * sizeof(*pOut)); + return; + } +} + + +drwav_uint64 drwav_read_s32__pcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut) +{ + // Fast path. + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bytesPerSample == 4) { + return drwav_read(pWav, samplesToRead, pBufferOut); + } + + if (pWav->bytesPerSample == 0) { + return 0; + } + + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav__pcm_to_s32(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s32__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut) +{ + // We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't + // want to duplicate that code. + drwav_uint64 totalSamplesRead = 0; + drwav_int16 samples16[2048]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read_s16(pWav, drwav_min(samplesToRead, 2048), samples16); + if (samplesRead == 0) { + break; + } + + drwav_s16_to_s32(pBufferOut, samples16, (size_t)samplesRead); // <-- Safe cast because we're clamping to 2048. + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s32__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut) +{ + // We're just going to borrow the implementation from the drwav_read_s16() since IMA-ADPCM is a little bit more complicated than other formats and I don't + // want to duplicate that code. + drwav_uint64 totalSamplesRead = 0; + drwav_int16 samples16[2048]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read_s16(pWav, drwav_min(samplesToRead, 2048), samples16); + if (samplesRead == 0) { + break; + } + + drwav_s16_to_s32(pBufferOut, samples16, (size_t)samplesRead); // <-- Safe cast because we're clamping to 2048. + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s32__ieee(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut) +{ + if (pWav->bytesPerSample == 0) { + return 0; + } + + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav__ieee_to_s32(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s32__alaw(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut) +{ + if (pWav->bytesPerSample == 0) { + return 0; + } + + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav_alaw_to_s32(pBufferOut, sampleData, (size_t)samplesRead); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s32__mulaw(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut) +{ + if (pWav->bytesPerSample == 0) { + return 0; + } + + drwav_uint64 totalSamplesRead = 0; + unsigned char sampleData[4096]; + while (samplesToRead > 0) { + drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData); + if (samplesRead == 0) { + break; + } + + drwav_mulaw_to_s32(pBufferOut, sampleData, (size_t)samplesRead); + + pBufferOut += samplesRead; + samplesToRead -= samplesRead; + totalSamplesRead += samplesRead; + } + + return totalSamplesRead; +} + +drwav_uint64 drwav_read_s32(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut) +{ + if (pWav == NULL || samplesToRead == 0 || pBufferOut == NULL) { + return 0; + } + + // Don't try to read more samples than can potentially fit in the output buffer. + if (samplesToRead * sizeof(drwav_int32) > DRWAV_SIZE_MAX) { + samplesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int32); + } + + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { + return drwav_read_s32__pcm(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { + return drwav_read_s32__msadpcm(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { + return drwav_read_s32__ieee(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { + return drwav_read_s32__alaw(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { + return drwav_read_s32__mulaw(pWav, samplesToRead, pBufferOut); + } + + if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { + return drwav_read_s32__ima(pWav, samplesToRead, pBufferOut); + } + + return 0; +} + +void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = ((int)pIn[i] - 128) << 24; + } +} + +void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = pIn[i] << 16; + } +} + +void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + unsigned int s0 = pIn[i*3 + 0]; + unsigned int s1 = pIn[i*3 + 1]; + unsigned int s2 = pIn[i*3 + 2]; + + drwav_int32 sample32 = (drwav_int32)((s0 << 8) | (s1 << 16) | (s2 << 24)); + *pOut++ = sample32; + } +} + +void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]); + } +} + +void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]); + } +} + +void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i = 0; i < sampleCount; ++i) { + *pOut++ = ((drwav_int32)drwav__alaw_to_s16(pIn[i])) << 16; + } +} + +void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) +{ + if (pOut == NULL || pIn == NULL) { + return; + } + + for (size_t i= 0; i < sampleCount; ++i) { + *pOut++ = ((drwav_int32)drwav__mulaw_to_s16(pIn[i])) << 16; + } +} + + + +drwav_int16* drwav__read_and_close_s16(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + drwav_assert(pWav != NULL); + + drwav_uint64 sampleDataSize = pWav->totalSampleCount * sizeof(drwav_int16); + if (sampleDataSize > DRWAV_SIZE_MAX) { + drwav_uninit(pWav); + return NULL; // File's too big. + } + + drwav_int16* pSampleData = (drwav_int16*)DRWAV_MALLOC((size_t)sampleDataSize); // <-- Safe cast due to the check above. + if (pSampleData == NULL) { + drwav_uninit(pWav); + return NULL; // Failed to allocate memory. + } + + drwav_uint64 samplesRead = drwav_read_s16(pWav, (size_t)pWav->totalSampleCount, pSampleData); + if (samplesRead != pWav->totalSampleCount) { + DRWAV_FREE(pSampleData); + drwav_uninit(pWav); + return NULL; // There was an error reading the samples. + } + + drwav_uninit(pWav); + + if (sampleRate) *sampleRate = pWav->sampleRate; + if (channels) *channels = pWav->channels; + if (totalSampleCount) *totalSampleCount = pWav->totalSampleCount; + return pSampleData; +} + +float* drwav__read_and_close_f32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + drwav_assert(pWav != NULL); + + drwav_uint64 sampleDataSize = pWav->totalSampleCount * sizeof(float); + if (sampleDataSize > DRWAV_SIZE_MAX) { + drwav_uninit(pWav); + return NULL; // File's too big. + } + + float* pSampleData = (float*)DRWAV_MALLOC((size_t)sampleDataSize); // <-- Safe cast due to the check above. + if (pSampleData == NULL) { + drwav_uninit(pWav); + return NULL; // Failed to allocate memory. + } + + drwav_uint64 samplesRead = drwav_read_f32(pWav, (size_t)pWav->totalSampleCount, pSampleData); + if (samplesRead != pWav->totalSampleCount) { + DRWAV_FREE(pSampleData); + drwav_uninit(pWav); + return NULL; // There was an error reading the samples. + } + + drwav_uninit(pWav); + + if (sampleRate) *sampleRate = pWav->sampleRate; + if (channels) *channels = pWav->channels; + if (totalSampleCount) *totalSampleCount = pWav->totalSampleCount; + return pSampleData; +} + +drwav_int32* drwav__read_and_close_s32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + drwav_assert(pWav != NULL); + + drwav_uint64 sampleDataSize = pWav->totalSampleCount * sizeof(drwav_int32); + if (sampleDataSize > DRWAV_SIZE_MAX) { + drwav_uninit(pWav); + return NULL; // File's too big. + } + + drwav_int32* pSampleData = (drwav_int32*)DRWAV_MALLOC((size_t)sampleDataSize); // <-- Safe cast due to the check above. + if (pSampleData == NULL) { + drwav_uninit(pWav); + return NULL; // Failed to allocate memory. + } + + drwav_uint64 samplesRead = drwav_read_s32(pWav, (size_t)pWav->totalSampleCount, pSampleData); + if (samplesRead != pWav->totalSampleCount) { + DRWAV_FREE(pSampleData); + drwav_uninit(pWav); + return NULL; // There was an error reading the samples. + } + + drwav_uninit(pWav); + + if (sampleRate) *sampleRate = pWav->sampleRate; + if (channels) *channels = pWav->channels; + if (totalSampleCount) *totalSampleCount = pWav->totalSampleCount; + return pSampleData; +} + + +drwav_int16* drwav_open_and_read_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drwav wav; + if (!drwav_init(&wav, onRead, onSeek, pUserData)) { + return NULL; + } + + return drwav__read_and_close_s16(&wav, channels, sampleRate, totalSampleCount); +} + +float* drwav_open_and_read_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drwav wav; + if (!drwav_init(&wav, onRead, onSeek, pUserData)) { + return NULL; + } + + return drwav__read_and_close_f32(&wav, channels, sampleRate, totalSampleCount); +} + +drwav_int32* drwav_open_and_read_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drwav wav; + if (!drwav_init(&wav, onRead, onSeek, pUserData)) { + return NULL; + } + + return drwav__read_and_close_s32(&wav, channels, sampleRate, totalSampleCount); +} + +#ifndef DR_WAV_NO_STDIO +drwav_int16* drwav_open_and_read_file_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drwav wav; + if (!drwav_init_file(&wav, filename)) { + return NULL; + } + + return drwav__read_and_close_s16(&wav, channels, sampleRate, totalSampleCount); +} + +float* drwav_open_and_read_file_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drwav wav; + if (!drwav_init_file(&wav, filename)) { + return NULL; + } + + return drwav__read_and_close_f32(&wav, channels, sampleRate, totalSampleCount); +} + +drwav_int32* drwav_open_and_read_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drwav wav; + if (!drwav_init_file(&wav, filename)) { + return NULL; + } + + return drwav__read_and_close_s32(&wav, channels, sampleRate, totalSampleCount); +} +#endif + +drwav_int16* drwav_open_and_read_memory_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drwav wav; + if (!drwav_init_memory(&wav, data, dataSize)) { + return NULL; + } + + return drwav__read_and_close_s16(&wav, channels, sampleRate, totalSampleCount); +} + +float* drwav_open_and_read_memory_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drwav wav; + if (!drwav_init_memory(&wav, data, dataSize)) { + return NULL; + } + + return drwav__read_and_close_f32(&wav, channels, sampleRate, totalSampleCount); +} + +drwav_int32* drwav_open_and_read_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drwav wav; + if (!drwav_init_memory(&wav, data, dataSize)) { + return NULL; + } + + return drwav__read_and_close_s32(&wav, channels, sampleRate, totalSampleCount); +} +#endif //DR_WAV_NO_CONVERSION_API + + +void drwav_free(void* pDataReturnedByOpenAndRead) +{ + DRWAV_FREE(pDataReturnedByOpenAndRead); +} + +#endif //DR_WAV_IMPLEMENTATION + + +// REVISION HISTORY +// +// v0.8.5 - 2018-09-11 +// - Const correctness. +// - Fix a potential stack overflow. +// +// v0.8.4 - 2018-08-07 +// - Improve 64-bit detection. +// +// v0.8.3 - 2018-08-05 +// - Fix C++ build on older versions of GCC. +// +// v0.8.2 - 2018-08-02 +// - Fix some big-endian bugs. +// +// v0.8.1 - 2018-06-29 +// - Add support for sequential writing APIs. +// - Disable seeking in write mode. +// - Fix bugs with Wave64. +// - Fix typos. +// +// v0.8 - 2018-04-27 +// - Bug fix. +// - Start using major.minor.revision versioning. +// +// v0.7f - 2018-02-05 +// - Restrict ADPCM formats to a maximum of 2 channels. +// +// v0.7e - 2018-02-02 +// - Fix a crash. +// +// v0.7d - 2018-02-01 +// - Fix a crash. +// +// v0.7c - 2018-02-01 +// - Set drwav.bytesPerSample to 0 for all compressed formats. +// - Fix a crash when reading 16-bit floating point WAV files. In this case dr_wav will output silence for +// all format conversion reading APIs (*_s16, *_s32, *_f32 APIs). +// - Fix some divide-by-zero errors. +// +// v0.7b - 2018-01-22 +// - Fix errors with seeking of compressed formats. +// - Fix compilation error when DR_WAV_NO_CONVERSION_API +// +// v0.7a - 2017-11-17 +// - Fix some GCC warnings. +// +// v0.7 - 2017-11-04 +// - Add writing APIs. +// +// v0.6 - 2017-08-16 +// - API CHANGE: Rename dr_* types to drwav_*. +// - Add support for custom implementations of malloc(), realloc(), etc. +// - Add support for Microsoft ADPCM. +// - Add support for IMA ADPCM (DVI, format code 0x11). +// - Optimizations to drwav_read_s16(). +// - Bug fixes. +// +// v0.5g - 2017-07-16 +// - Change underlying type for booleans to unsigned. +// +// v0.5f - 2017-04-04 +// - Fix a minor bug with drwav_open_and_read_s16() and family. +// +// v0.5e - 2016-12-29 +// - Added support for reading samples as signed 16-bit integers. Use the _s16() family of APIs for this. +// - Minor fixes to documentation. +// +// v0.5d - 2016-12-28 +// - Use drwav_int*/drwav_uint* sized types to improve compiler support. +// +// v0.5c - 2016-11-11 +// - Properly handle JUNK chunks that come before the FMT chunk. +// +// v0.5b - 2016-10-23 +// - A minor change to drwav_bool8 and drwav_bool32 types. +// +// v0.5a - 2016-10-11 +// - Fixed a bug with drwav_open_and_read() and family due to incorrect argument ordering. +// - Improve A-law and mu-law efficiency. +// +// v0.5 - 2016-09-29 +// - API CHANGE. Swap the order of "channels" and "sampleRate" parameters in drwav_open_and_read*(). Rationale for this is to +// keep it consistent with dr_audio and dr_flac. +// +// v0.4b - 2016-09-18 +// - Fixed a typo in documentation. +// +// v0.4a - 2016-09-18 +// - Fixed a typo. +// - Change date format to ISO 8601 (YYYY-MM-DD) +// +// v0.4 - 2016-07-13 +// - API CHANGE. Make onSeek consistent with dr_flac. +// - API CHANGE. Rename drwav_seek() to drwav_seek_to_sample() for clarity and consistency with dr_flac. +// - Added support for Sony Wave64. +// +// v0.3a - 2016-05-28 +// - API CHANGE. Return drwav_bool32 instead of int in onSeek callback. +// - Fixed a memory leak. +// +// v0.3 - 2016-05-22 +// - Lots of API changes for consistency. +// +// v0.2a - 2016-05-16 +// - Fixed Linux/GCC build. +// +// v0.2 - 2016-05-11 +// - Added support for reading data as signed 32-bit PCM for consistency with dr_flac. +// +// v0.1a - 2016-05-07 +// - Fixed a bug in drwav_open_file() where the file handle would not be closed if the loader failed to initialize. +// +// v0.1 - 2016-05-04 +// - Initial versioned release. + + +/* +This is free and unencumbered software released into the public domain. + +Anyone is free to copy, modify, publish, use, compile, sell, or +distribute this software, either in source code form or as a compiled +binary, for any purpose, commercial or non-commercial, and by any +means. + +In jurisdictions that recognize copyright laws, the author or authors +of this software dedicate any and all copyright interest in the +software to the public domain. We make this dedication for the benefit +of the public at large and to the detriment of our heirs and +successors. We intend this dedication to be an overt act of +relinquishment in perpetuity of all present and future rights to this +software under copyright law. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR +OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +OTHER DEALINGS IN THE SOFTWARE. + +For more information, please refer to <http://unlicense.org/> +*/ diff --git a/include/kfr/io/file.hpp b/include/kfr/io/file.hpp @@ -34,6 +34,183 @@ namespace kfr { +#ifdef CMT_OS_WIN +using filepath_char = wchar_t; +#define KFR_FILEPATH_PREFIX_CONCAT(x, y) x##y +#define KFR_FILEPATH(s) KFR_FILEPATH_PREFIX_CONCAT(L, s) +#else +using filepath_char = char; +#define KFR_FILEPATH(s) s +#endif + +using filepath = std::basic_string<filepath_char>; + +#if defined _MSC_VER // MSVC +#define IO_SEEK_64 _fseeki64 +#define IO_TELL_64 _ftelli64 +#elif defined _WIN32 // MingW +#define IO_SEEK_64 fseeko64 +#define IO_TELL_64 ftello64 +#else // macOS, Linux +#define IO_SEEK_64 fseeko +#define IO_TELL_64 ftello +#endif + +inline FILE* fopen_portable(const filepath_char* path, const filepath_char* mode) +{ +#ifdef CMT_OS_WIN + FILE* f = nullptr; + errno_t e = _wfopen_s(&f, path, mode); + return f; +#else + return fopen(path, mode); +#endif +} + +template <typename T = void> +constexpr inline size_t element_size() +{ + return sizeof(T); +} +template <> +constexpr inline size_t element_size<void>() +{ + return 1; +} + +enum class seek_origin : int +{ + current = SEEK_CUR, + begin = SEEK_SET, + end = SEEK_END, +}; + +template <typename T = void> +struct abstract_stream +{ + virtual ~abstract_stream() {} + virtual imax tell() const = 0; + virtual bool seek(imax offset, seek_origin origin) = 0; + bool seek(imax offset, int origin) { return seek(offset, static_cast<seek_origin>(origin)); } +}; + +template <typename T = void> +struct abstract_reader : abstract_stream<T> +{ + virtual size_t read(T* data, size_t size) = 0; +}; + +template <typename T = void> +struct abstract_writer : abstract_stream<T> +{ + virtual size_t write(const T* data, size_t size) = 0; +}; + +template <typename From, typename To = void> +struct reader_adapter : abstract_reader<To> +{ + static_assert(element_size<From>() % element_size<To>() == 0 || + element_size<To>() % element_size<From>() == 0, + "From and To sizes must be compatible"); + reader_adapter(std::shared_ptr<abstract_reader<From>>&& reader) : reader(std::move(reader)) {} + virtual size_t read(To* data, size_t size) final + { + return reader->read(reinterpret_cast<From*>(data), size * element_size<From>() / element_size<To>()) * + element_size<To>() / element_size<From>(); + } + std::shared_ptr<abstract_reader<From>> reader; +}; + +template <typename From, typename To = void> +struct writer_adapter : abstract_writer<To> +{ + static_assert(element_size<From>() % element_size<To>() == 0 || + element_size<To>() % element_size<From>() == 0, + "From and To sizes must be compatible"); + writer_adapter(std::shared_ptr<abstract_writer<From>>&& writer) : writer(std::move(writer)) {} + virtual size_t write(const To* data, size_t size) final + { + return writer->write(reinterpret_cast<const From*>(data), + size * element_size<From>() / element_size<To>()) * + element_size<To>() / element_size<From>(); + } + std::shared_ptr<abstract_writer<From>> writer; +}; + +using binary_reader = abstract_reader<>; +using binary_writer = abstract_writer<>; +using byte_reader = abstract_reader<u8>; +using byte_writer = abstract_writer<u8>; +using f32_reader = abstract_reader<f32>; +using f32_writer = abstract_writer<f32>; + +struct file_handle +{ + file_handle(FILE* file) : file(file) {} + file_handle() = delete; + file_handle(const file_handle&) = delete; + file_handle(file_handle&& handle) : file(nullptr) { swap(handle); } + ~file_handle() + { + if (file) + { + fclose(file); + } + } + FILE* file; + void swap(file_handle& handle) { std::swap(file, handle.file); } +}; + +template <typename T = void> +struct file_reader : abstract_reader<T> +{ + file_reader(file_handle&& handle) : handle(std::move(handle)) {} + ~file_reader() override {} + size_t read(T* data, size_t size) final { return fread(data, element_size<T>(), size, handle.file); } + + imax tell() const final { return IO_TELL_64(handle.file); } + bool seek(imax offset, seek_origin origin) final + { + return !IO_SEEK_64(handle.file, offset, static_cast<int>(origin)); + } + file_handle handle; +}; + +template <typename T = void> +struct file_writer : abstract_writer<T> +{ + file_writer(file_handle&& handle) : handle(std::move(handle)) {} + ~file_writer() override {} + size_t write(const T* data, size_t size) final + { + return fwrite(data, element_size<T>(), size, handle.file); + } + imax tell() const final { return IO_TELL_64(handle.file); } + bool seek(imax offset, seek_origin origin) final + { + return !IO_SEEK_64(handle.file, offset, static_cast<int>(origin)); + } + file_handle handle; +}; + +template <typename T = void> +inline std::shared_ptr<file_reader<T>> open_file_for_reading(const filepath& path) +{ + return std::make_shared<file_reader<T>>(fopen_portable(path.c_str(), KFR_FILEPATH("rb"))); +} + +template <typename T = void> +inline std::shared_ptr<file_writer<T>> open_file_for_writing(const filepath& path) +{ + return std::make_shared<file_writer<T>>(fopen_portable(path.c_str(), KFR_FILEPATH("wb"))); +} + +template <typename T = void> +inline std::shared_ptr<file_writer<T>> open_file_for_appending(const filepath& path) +{ + return std::make_shared<file_writer<T>>(fopen_portable(path.c_str(), KFR_FILEPATH("ab"))); +} + namespace internal { struct expression_file_base @@ -58,7 +235,12 @@ struct expression_sequential_file_writer : expression_file_base, output_expressi template <typename U> void write(const U& value) { - fwrite(std::addressof(value), 1, sizeof(U), file); + write(&value, 1); + } + template <typename U> + void write(const U* value, size_t size) + { + fwrite(value, 1, sizeof(U) * size, file); } }; @@ -111,31 +293,6 @@ struct expression_file_reader : expression_file_base, input_expression } mutable size_t position = 0; }; -} - -/// @brief Creates an expression that returns values from the given file (sequential access) -inline internal::expression_sequential_file_reader sequential_file_reader(const std::string& file_name) -{ - return internal::expression_sequential_file_reader(fopen(file_name.c_str(), "rb")); -} +} // namespace internal -/// @brief Creates an output expression that writes values to the given file (sequential access) -inline internal::expression_sequential_file_writer sequential_file_writer(const std::string& file_name) -{ - return internal::expression_sequential_file_writer(fopen(file_name.c_str(), "wb")); -} - -/// @brief Creates an expression that returns values from the given file (random access) -template <typename T = u8> -internal::expression_file_reader<T> file_reader(const std::string& file_name) -{ - return internal::expression_file_reader<T>(fopen(file_name.c_str(), "rb")); -} - -/// @brief Creates an output expression that writes values to the given file (random access) -template <typename T = u8> -internal::expression_file_writer<T> file_writer(const std::string& file_name) -{ - return internal::expression_file_writer<T>(fopen(file_name.c_str(), "wb")); -} -} +} // namespace kfr diff --git a/include/kfr/io/impl/audiofile-impl.cpp b/include/kfr/io/impl/audiofile-impl.cpp @@ -0,0 +1,39 @@ +/** @addtogroup io + * @{ + */ +/* + Copyright (C) 2016 D Levin (https://www.kfrlib.com) + This file is part of KFR + + KFR is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + KFR is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with KFR. + + If GPL is not suitable for your project, you must purchase a commercial license to use KFR. + Buying a commercial license is mandatory as soon as you develop commercial activities without + disclosing the source code of your own applications. + See https://www.kfrlib.com for details. + */ + +#include "../audiofile.hpp" + +#if defined(KFR_ENABLE_WAV) && KFR_ENABLE_WAV +#define DR_WAV_NO_STDIO +#define DR_WAV_NO_CONVERSION_API +#define DR_WAV_IMPLEMENTATION +#include "../dr/dr_wav.h" +#endif +#if defined(KFR_ENABLE_FLAC) && KFR_ENABLE_FLAC +#define DR_FLAC_IMPLEMENTATION +#define DR_FLAC_NO_STDIO +#include "../dr/dr_flac.h" +#endif diff --git a/sources.cmake b/sources.cmake @@ -126,6 +126,8 @@ set( ${PROJECT_SOURCE_DIR}/include/kfr/io/file.hpp ${PROJECT_SOURCE_DIR}/include/kfr/io/python_plot.hpp ${PROJECT_SOURCE_DIR}/include/kfr/io/tostring.hpp + ${PROJECT_SOURCE_DIR}/include/kfr/io/dr/dr_flac.h + ${PROJECT_SOURCE_DIR}/include/kfr/io/dr/dr_wav.h ${PROJECT_SOURCE_DIR}/include/kfr/testo/assert.hpp ${PROJECT_SOURCE_DIR}/include/kfr/testo/comparison.hpp ${PROJECT_SOURCE_DIR}/include/kfr/testo/testo.hpp diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt @@ -44,7 +44,7 @@ set(ALL_TESTS_CPP dft_test.cpp dsp_test.cpp expression_test.cpp - intrinsic_test.cpp) + intrinsic_test.cpp io_test.cpp) if (MPFR_FOUND AND GMP_FOUND) list(APPEND ALL_TESTS_CPP transcendental_test.cpp) @@ -55,6 +55,7 @@ endif () add_executable(all_tests ${ALL_TESTS_CPP}) target_compile_definitions(all_tests PRIVATE KFR_NO_MAIN) target_link_libraries(all_tests kfr kfr_dft) +target_link_libraries(all_tests kfr kfr_dft kfr_io) add_executable(intrinsic_test intrinsic_test.cpp) target_link_libraries(intrinsic_test kfr) @@ -72,10 +73,11 @@ endif () function(add_x86_test NAME FLAGS) separate_arguments(FLAGS) - add_executable(all_tests_${NAME} ${ALL_TESTS_CPP} ${KFR_DFT_SRC}) + add_executable(all_tests_${NAME} ${ALL_TESTS_CPP} ${KFR_DFT_SRC} ${KFR_IO_SRC}) target_compile_options(all_tests_${NAME} PRIVATE ${FLAGS}) target_compile_definitions(all_tests_${NAME} PRIVATE KFR_NO_MAIN) target_link_libraries(all_tests_${NAME} kfr) + target_compile_definitions(all_tests_${NAME} PUBLIC KFR_ENABLE_FLAC=1) if (MPFR_FOUND AND GMP_FOUND) target_link_libraries(all_tests_${NAME} ${MPFR_LIBRARIES} ${GMP_LIBRARIES}) endif () @@ -111,6 +113,10 @@ target_link_libraries(expression_test kfr) add_executable(ebu_test ebu_test.cpp) target_link_libraries(ebu_test kfr) +add_executable(io_test io_test.cpp) +target_link_libraries(io_test kfr kfr_io) +target_compile_definitions(io_test PUBLIC KFR_ENABLE_FLAC=1) + if(USE_SDE) find_program(EMULATOR "sde") list(APPEND EMULATOR "-skx") @@ -138,6 +144,8 @@ if (NOT IOS) COMMAND ${EMULATOR} ${PROJECT_BINARY_DIR}/bin/complex_test) add_test(NAME expression_test COMMAND ${EMULATOR} ${PROJECT_BINARY_DIR}/bin/expression_test) + add_test(NAME io_test + COMMAND ${EMULATOR} ${PROJECT_BINARY_DIR}/bin/io_test) if (NOT ARM) add_test(NAME multiarch diff --git a/tests/base_test.cpp b/tests/base_test.cpp @@ -425,9 +425,9 @@ TEST(sample_interleave_deinterleave) deinterleave((float*[]){ in[0].data(), in[1].data(), in[2].data() }, out.data(), 3, size); - CHECK(maxof(in[0] - render(counter() * 3.f + 0.f, size)) == 0); - CHECK(maxof(in[1] - render(counter() * 3.f + 1.f, size)) == 0); - CHECK(maxof(in[2] - render(counter() * 3.f + 2.f, size)) == 0); + CHECK(absmaxof(in[0] - render(counter() * 3.f + 0.f, size)) == 0); + CHECK(absmaxof(in[1] - render(counter() * 3.f + 1.f, size)) == 0); + CHECK(absmaxof(in[2] - render(counter() * 3.f + 2.f, size)) == 0); } #ifndef KFR_NO_MAIN diff --git a/tests/io_test.cpp b/tests/io_test.cpp @@ -0,0 +1,64 @@ +/** + * KFR (http://kfrlib.com) + * Copyright (C) 2016 D Levin + * See LICENSE.txt for details + */ + +#include <kfr/testo/testo.hpp> + +#include <kfr/base.hpp> +#include <kfr/cometa/function.hpp> +#include <kfr/dsp.hpp> +#include <kfr/io.hpp> + +using namespace kfr; + +#if KFR_ENABLE_WAV +TEST(write_wav_file) +{ + audio_writer_wav<float> writer(open_file_for_writing(KFR_FILEPATH("temp_audio_file.wav")), + audio_format{}); + univector<float> data(44100 * 2); + data = sin(counter() * 0.01f); + size_t wr = writer.write(data.data(), data.size()); + CHECK(wr == data.size()); + CHECK(writer.format().length == data.size() / 2); +} + +TEST(read_wav_file) +{ + audio_reader_wav<float> reader(open_file_for_reading(KFR_FILEPATH("temp_audio_file.wav"))); + CHECK(reader.format().channels == 2); + CHECK(reader.format().type == audio_sample_type::i16); + CHECK(reader.format().samplerate == 44100); + univector<float> data(44100 * 2); + CHECK(reader.format().length == data.size() / 2); + size_t rd = reader.read(data.data(), data.size()); + CHECK(rd == data.size()); + CHECK(absmaxof(data - render(sin(counter() * 0.01f), data.size())) < 0.0001f); +} +#endif + +#if KFR_ENABLE_FLAC +TEST(read_flac_file) +{ + audio_reader_flac<float> reader(open_file_for_reading(KFR_FILEPATH("../../tests/test-audio/sine.flac"))); + CHECK(reader.format().channels == 2); + CHECK(reader.format().type == audio_sample_type::i32); + CHECK(reader.format().samplerate == 44100); + univector<float> data(44100 * 2); + CHECK(reader.format().length == data.size() / 2); + size_t rd = reader.read(data.data(), data.size()); + CHECK(rd == data.size()); + CHECK(absmaxof(data - render(sin(counter() * 0.01f), data.size())) < 0.0001f); +} +#endif + +#ifndef KFR_NO_MAIN +int main() +{ + println(library_version()); + + return testo::run_all("", true); +} +#endif diff --git a/tests/test-audio/sine.flac b/tests/test-audio/sine.flac Binary files differ.