neural-amp-modeler

Neural network emulator for guitar amplifiers
Log | Files | Refs | README | LICENSE

commit 3cf65f56ddd1762e026d53e0adc54753ddc4dae0
parent 1005d5defb3a4a18d1e6833a92abb7ffc7ac52d1
Author: Steven Atkinson <steven@atkinson.mn>
Date:   Tue, 27 Jun 2023 20:10:02 -0700

Update README.md

Fix links
Diffstat:
MREADME.md | 12++++++------
1 file changed, 6 insertions(+), 6 deletions(-)

diff --git a/README.md b/README.md @@ -4,12 +4,12 @@ This repository handles training, reamping, and exporting the weights of a model For playing trained models in real time in a standalone application or plugin, see the partner repo, [NeuralAmpModelerPlugin](https://github.com/sdatkinson/NeuralAmpModelerPlugin). -* [How to use]() - * [Google Colab](https://github.com/sdatkinson/neural-amp-modeler/edit/main/README.md#google-colab) - * [GUI](https://github.com/sdatkinson/neural-amp-modeler/edit/main/README.md#gui) - * [The command line trainer (all features)](https://github.com/sdatkinson/neural-amp-modeler/edit/main/README.md#the-command-line-trainer-all-features) -* [Standardized reamping files](https://github.com/sdatkinson/neural-amp-modeler/edit/main/README.md#standardized-reamping-files) -* [Other utilities](https://github.com/sdatkinson/neural-amp-modeler/edit/main/README.md#other-utilities) +* [How to use](https://github.com/sdatkinson/neural-amp-modeler/tree/main#how-to-use) + * [Google Colab](https://github.com/sdatkinson/neural-amp-modeler/tree/main#google-colab) + * [GUI](https://github.com/sdatkinson/neural-amp-modeler/tree/main#gui) + * [The command line trainer (all features)](https://github.com/sdatkinson/neural-amp-modeler/tree/main#the-command-line-trainer-all-features) +* [Standardized reamping files](https://github.com/sdatkinson/neural-amp-modeler/tree/main#standardized-reamping-files) +* [Other utilities](https://github.com/sdatkinson/neural-amp-modeler/tree/main#other-utilities) ## How to use There are three main ways to use the NAM trainer. There are two simplified trainers available (1) in your browser via Google Colab and (2) Locally via a GUI. There is also a full-featured trainer for power users than can be runf rom the command line.