GuitarLSTM

Deep learning models for guitar amp/pedal emulation using LSTM with Keras
Log | Files | Refs | README

commit f0aa7e45805dcef769ede97a9e38bbd5083f163f
parent 608d2e4d0f38082f61afe741995607529e54cca7
Author: keith <kbloemer89@gmail.com>
Date:   Sun,  6 Dec 2020 14:23:24 -0600

Updated Colab notebook with split_data argument

Diffstat:
Mguitar_lstm_colab.ipynb | 104++++++++++++++++++++++++++++++++++++++++++++++++++++---------------------------
1 file changed, 69 insertions(+), 35 deletions(-)

diff --git a/guitar_lstm_colab.ipynb b/guitar_lstm_colab.ipynb @@ -24,7 +24,8 @@ "# 1. Upload your input and output wav files to the current directory in Colab\n", "# 2. Edit the USER INPUTS section to point to your wav files, and choose a\n", "# model name, and number of epochs for training. If you experience \n", - "# crashing due to low RAM, reduce the \"input_size\" parameter.\n", + "# crashing due to low RAM, reduce the \"input_size\" parameter, or increase\n", + "# the \"split_data\" parameter.\n", "# 3. Run each section of code. The trained models and output wav files will be \n", "# added to the \"models\" directory.\n", "#\n", @@ -49,7 +50,7 @@ "import h5py\n", "\n" ], - "execution_count": null, + "execution_count": 1, "outputs": [] }, { @@ -64,14 +65,14 @@ "in_file = 'ts9_test1_in_FP32.wav'\n", "out_file = 'ts9_test1_out_FP32.wav'\n", "epochs = 1\n", - "\n", + "split_data=4 # **Increase this to reduce RAM usage **\n", "\n", "train_mode = 0 # 0 = speed training, \n", " # 1 = accuracy training \n", " # 2 = extended training\n", "\n", - "input_size = 75 # !!!IMPORTANT !!!: The input_size is set at 75 for Colab notebook. \n", - " # a higher setting may result in crashing due to\n", + "input_size = 150 # !!!IMPORTANT !!!: The input_size is set at 150 for Colab notebook. \n", + " # A higher setting may result in crashing due to\n", " # memory limitation of 8GB for the free version\n", " # of Colab. This setting limits the accuracy of\n", " # the training, especially for complex guitar signals\n", @@ -80,6 +81,9 @@ " # !!!IMPORTANT!!!: You will most likely need to cycle the runtime to \n", " # free up RAM between training sessions.\n", " #\n", + " # Increase the \"split_data\" parameter to reduce the RAM used and\n", + " # still allow for a higher \"input_size\" setting. \n", + " #\n", " # Future dev note: Using a custom dataloader may be a good\n", " # workaround for this limitation, at the cost\n", " # of slower training.\n", @@ -159,24 +163,6 @@ " hidden_units= 96\n", "\n", "\n", - "# Load and Preprocess Data ###########################################\n", - "in_rate, in_data = wavfile.read(in_file)\n", - "out_rate, out_data = wavfile.read(out_file)\n", - "\n", - "X = in_data.astype(np.float32).flatten() \n", - "X = normalize(X).reshape(len(X),1) \n", - "y = out_data.astype(np.float32).flatten() \n", - "y = normalize(y).reshape(len(y),1) \n", - "\n", - "y_ordered = y[input_size-1:] \n", - "\n", - "indices = np.arange(input_size) + np.arange(len(X)-input_size+1)[:,np.newaxis] \n", - "X_ordered = tf.gather(X,indices) \n", - "\n", - "shuffled_indices = np.random.permutation(len(X_ordered)) \n", - "X_random = tf.gather(X_ordered,shuffled_indices)\n", - "y_random = tf.gather(y_ordered, shuffled_indices)\n", - "\n", "# Create Sequential Model ###########################################\n", "clear_session()\n", "model = Sequential()\n", @@ -187,27 +173,75 @@ "model.compile(optimizer=Adam(learning_rate=learning_rate), loss=error_to_signal, metrics=[error_to_signal])\n", "print(model.summary())\n", "\n", - "# Train Model ###################################################\n", - "model.fit(X_random,y_random, epochs=epochs, batch_size=batch_size, validation_split=test_size) \n", + "# Load and Preprocess Data ###########################################\n", + "in_rate, in_data = wavfile.read(in_file)\n", + "out_rate, out_data = wavfile.read(out_file)\n", + "\n", + "X_all = in_data.astype(np.float32).flatten() \n", + "X_all = normalize(X_all).reshape(len(X_all),1) \n", + "y_all = out_data.astype(np.float32).flatten() \n", + "y_all = normalize(y_all).reshape(len(y_all),1) \n", + "\n", + "# If splitting the data for training, do this part\n", + "if split_data > 1:\n", + " num_split = len(X_all) // split_data\n", + " X = X_all[0:num_split*split_data]\n", + " y = y_all[0:num_split*split_data]\n", + " X_data = np.split(X, split_data)\n", + " y_data = np.split(y, split_data)\n", + "\n", + " # Perform training on each split dataset\n", + " for i in range(len(X_data)):\n", + " print(\"\\nTraining on split data \" + str(i+1) + \"/\" +str(len(X_data)))\n", + " X_split = X_data[i]\n", + " y_split = y_data[i]\n", + "\n", + " y_ordered = y_split[input_size-1:] \n", + "\n", + " indices = np.arange(input_size) + np.arange(len(X_split)-input_size+1)[:,np.newaxis] \n", + " X_ordered = tf.gather(X_split,indices) \n", + "\n", + " shuffled_indices = np.random.permutation(len(X_ordered)) \n", + " X_random = tf.gather(X_ordered,shuffled_indices)\n", + " y_random = tf.gather(y_ordered, shuffled_indices)\n", + "\n", + " # Train Model ###################################################\n", + " model.fit(X_random,y_random, epochs=epochs, batch_size=batch_size, validation_split=0.2) \n", "\n", - "model.save('models/'+name+'/'+name+'.h5')\n", "\n", - "#model.save('model_data/')\n", - "#model = load_model('new_model_'+name+'.h5', custom_objects={'error_to_signal' : error_to_signal})\n", - "#learning_rate = 0.005\n", - "#model.compile(optimizer=Adam(learning_rate=learning_rate), loss=error_to_signal, metrics=[error_to_signal])\n", + " model.save('models/'+name+'/'+name+'.h5')\n", + "\n", + "# If training on the full set of input data in one run, do this part\n", + "else:\n", + " y_ordered = y_all[input_size-1:] \n", + "\n", + " indices = np.arange(input_size) + np.arange(len(X_all)-input_size+1)[:,np.newaxis] \n", + " X_ordered = tf.gather(X_all,indices) \n", + "\n", + " shuffled_indices = np.random.permutation(len(X_ordered)) \n", + " X_random = tf.gather(X_ordered,shuffled_indices)\n", + " y_random = tf.gather(y_ordered, shuffled_indices)\n", + "\n", + " # Train Model ###################################################\n", + " model.fit(X_random,y_random, epochs=epochs, batch_size=batch_size, validation_split=test_size) \n", + "\n", + " model.save('models/'+name+'/'+name+'.h5')\n", "\n", "# Run Prediction #################################################\n", "print(\"Running prediction..\")\n", - "y_the_rest, y_last_part = np.split(y_ordered, [int(len(y_ordered)*.8)])\n", - "x_the_rest, x_last_part = np.split(X, [int(len(X)*.8)])\n", "\n", - "x_the_rest, x_ordered_last_part = np.split(X_ordered, [int(len(X_ordered)*.8)])\n", - "prediction = model.predict(x_ordered_last_part, batch_size=batch_size)\n", + "# Get the last 20% of the wav data to run prediction and plot results\n", + "y_the_rest, y_last_part = np.split(y_all, [int(len(y_all)*.8)])\n", + "x_the_rest, x_last_part = np.split(X_all, [int(len(X_all)*.8)])\n", + "y_test = y_last_part[input_size-1:] \n", + "indices = np.arange(input_size) + np.arange(len(x_last_part)-input_size+1)[:,np.newaxis] \n", + "X_test = tf.gather(x_last_part,indices) \n", + "\n", + "prediction = model.predict(X_test, batch_size=batch_size)\n", "\n", "save_wav('models/'+name+'/y_pred.wav', prediction)\n", "save_wav('models/'+name+'/x_test.wav', x_last_part)\n", - "save_wav('models/'+name+'/y_test.wav', y_last_part)\n", + "save_wav('models/'+name+'/y_test.wav', y_test)\n", "\n", "# Add additional data to the saved model (like input_size)\n", "filename = 'models/'+name+'/'+name+'.h5'\n",